【題目】設點是平面上左、右兩個不同的定點, ,動點滿足:

(1)求證:動點的軌跡為橢圓;

(2)拋物線滿足:頂點在橢圓的中心;焦點與橢圓的右焦點重合

設拋物線與橢圓的一個交點為問:是否存在正實數(shù),使得的邊長為連續(xù)自然數(shù)若存在,求出的值;若不存在,說明理由

【答案】(1)見解析;(2)存在實數(shù),使得的邊長為連續(xù)自然數(shù)。

【解析】試題分析: (1)根據(jù)題意,分兩種情況討論:點P、F1、F2構成三角形,點P、F1、F2不構成三角形,每種情況下分析可得|PF1|+|PF2|=4m,由橢圓的定義分析可得答案;

(2)根據(jù)題意,由(1)可得,動點P的軌跡方程,分析可得拋物線的焦點坐標,假設存在滿足條件的實數(shù)m,結合橢圓與拋物線的性質分析可得m的值,即可得答案.

試題解析

(1)若點構成三角形則

整理得,即

若點不構成三角形,也滿足

所以動點的軌跡為橢圓

(2)動點的軌跡方程為

拋物線的焦點坐標為與橢圓的右焦點重合.

假設存在實數(shù),使得的邊長為連續(xù)自然數(shù).

因為,

不妨設|

由拋物線的定義可知,解得,

設點的坐標為,

整理得,解得

所以存在實數(shù),使得的邊長為連續(xù)自然數(shù)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)求曲線處的切線方程.

)求的單調區(qū)間.

)設,其中,證明:函數(shù)僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中, , ,點M是線段AB上的一點,且

(1)證明:平面平面ABCD;

(2)求直線CM與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 為實數(shù),函數(shù),函數(shù)

(1) 當時,令,若恒成立,求實數(shù)的取值范圍;

(2) 當時,令,是否存在實數(shù),使得對于函數(shù)定義域中的任意實數(shù),均存在實數(shù),有成立?若存在,求出實數(shù)的取值集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足, ,其中.

(1)設,求證:數(shù)列是等差數(shù)列,并求出的通項公式;

(2)設,數(shù)列的前項和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(Ⅰ)若,求的極小值;

(Ⅱ)在(Ⅰ)的條件下,是否存在實常數(shù),使得?若存在,求出的值.若不存在,說明理由;

(Ⅲ)設有兩個零點,且成等差數(shù)列,試探究值的符號.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要分析學生初中升學考試的數(shù)學成績對高一年級數(shù)學學習有什么影響,在高一年級學生中隨機抽取10名學生,分析他們入學的數(shù)學成績(x)和高一年級期末數(shù)學考試成績(y)(如下表):

(1)畫出散點圖;

(2)判斷入學成績(x)與高一期末考試成績(y)是否有線性相關關系;

(3)如果x與y具有線性相關關系,求出回歸直線方程;

編號

1

2

3

4

5

6

7

8

9

10

x

63

67

45

88

81

71

52

99

58

76

y

65

78

52

85

92

89

73

98

56

75

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花店每天以每枝元的價格從農場購進若干枝玫瑰花,然后以每枝元的價格出售.如果當天賣不完,剩下的玫瑰花做垃圾處理.

(1)若花店一天購進枝玫瑰花,求當天的利潤(單位:元)關于當天需求量(單位:枝, )的函數(shù)解析式.

(2)花店記錄了天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量

頻數(shù)

假設花店在這天內每天購進枝玫瑰花,求這天的日利潤(單位:元)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , 依次成公比為2的等比數(shù)列,且

B. , , 依次成公比為2的等比數(shù)列,且

C. , 依次成公比為的等比數(shù)列,且

D. , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

同步練習冊答案