19.已知$\overrightarrow{a}$=(1,1,1),$\overrightarrow$=(x,-1,-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)x=(  )
A.-1B.1C.2D.0

分析 根據(jù)$\overrightarrow{a}$⊥$\overrightarrow$時(shí)$\overrightarrow{a}$•$\overrightarrow$=0,列出方程求出x的值.

解答 解:∵$\overrightarrow{a}$=(1,1,1),$\overrightarrow$=(x,-1,-1),且$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}$•$\overrightarrow$=1•x+1×(-1)+1×(-1)=0,
解得x=2.
故選:C.

點(diǎn)評(píng) 本題考查了兩向量垂直,數(shù)量積為零的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(x1,y1,z1),$\overrightarrow$=(x2,y2,z2),$\overrightarrow{a}$≠$\overrightarrow$,設(shè)|$\overrightarrow{a}-\overrightarrow$|=k,則|$\overrightarrow{a}-\overrightarrow$與單位向量$\overrightarrow{i}$=(1,0,0)夾角的余弦值為( 。
A.$\frac{{x}_{1}-{x}_{2}}{k}$B.$\frac{{x}_{2}-{x}_{1}}{k}$C.$\frac{|{x}_{1}-{x}_{2}|}{k}$D.±$\frac{{x}_{1}-{x}_{2}}{k}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)集合A={x|2≤x≤4},B={x|x>3,或x<1},C={x|t+1<x<2t},t∈R.
(Ⅰ)求A∪∁UB;
(Ⅱ)若A∩C=C,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓N經(jīng)過(guò)點(diǎn)A(3,1),B(-1,3),且它的圓心在直線3x-y-2=0上.
(Ⅰ)求圓N的方程;
(Ⅱ)求圓N關(guān)于直線x-y+3=0對(duì)稱(chēng)的圓的方程.
(Ⅲ)若點(diǎn)D為圓N上任意一點(diǎn),且點(diǎn)C(3,0),求線段CD的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若復(fù)數(shù)$\frac{2-bi}{1+2i}({b∈R,i為虛數(shù)單位})$的實(shí)部和虛部互為相反數(shù),則b=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知命題p:?x∈(0,+∞),2x>1,則¬p為?x0∈(10,+∞),2x≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若a>b>c,且a+2b+c=0,則$\frac{c}{a}$的取值范圍是(-3,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知f(x)=ax3+3x2-1存在唯一的零點(diǎn)x0,且x0<0,則實(shí)數(shù)a的取值范圍是(-∞,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若定義運(yùn)算m?n=mn+2m+n,則不等式x?(x-2)<0的解集為(-2,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案