【題目】已知,設(shè)命題:指數(shù)函數(shù)上單調(diào)遞增.命題:函數(shù)的定義域為.若“”為假,“為真,求的取值范圍.

【答案】a的取值范圍為[0,1]∪[4,+∞).

【解析】試題分析:化簡命題可得,化簡命題可得,由為真命題, 為假命題,可得一真一假,分兩種情況討論,對于假以及真分別列不等式組,分別解不等式組,然后求并集即可求得實數(shù)的取值范圍.

試題解析:由命題p,得a>1,對于命題q,即使得xR,ax2ax+1>0恒成立

a>0,△=a2-4a<0,即0<a<4

a=0,1>0恒成立,滿足題意,所以0≤a<4

由題意知pq一真一假,

當(dāng)pq假時 ,所以a≥4.

當(dāng)pq真時,,即0≤a≤1.

綜上可知,a的取值范圍為[0,1]∪[4,+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)有甲、乙兩個研發(fā)小組,他們研究新產(chǎn)品成功的概率分別為 ,現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設(shè)甲、乙兩組的研發(fā)相互獨立.
(1)求恰好有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品A研發(fā)成功,預(yù)計企業(yè)可獲得利潤120萬元,不成功則會虧損50萬元;若新產(chǎn)品B研發(fā)成功,企業(yè)可獲得利潤100萬元,不成功則會虧損40萬元,求該企業(yè)獲利ξ萬元的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某班一次測驗成績進(jìn)行統(tǒng)計,如下表所示:

分?jǐn)?shù)段

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

概率

0.02

0.04

0.17

0.36

0.25

0.15

(1)求該班成績在[80,100]內(nèi)的概率;

(2)求該班成績在[60,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A、B、C所對的邊分別是,a、b、c,△ABC的面積S=
(Ⅰ)求A的大;
(Ⅱ)若b+c=5,a= ,求△ABC的面積的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程,根據(jù)下列條件,分別求出的值.

(1)方程兩實根的積為5;

(2)方程的兩實根滿足.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面 .過作一個平面使得平面.

(1)求平面將四棱錐分成兩部分幾何體的體積之比;

(2)若平面與平面之間的距離為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a+1|(a>0是常數(shù)).
(Ⅰ)證明:f(x)≥1;
(Ⅱ)若f(3)< ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小趙和小王約定在早上7:007:15之間到某公交站搭乘公交車去上學(xué),已知在這段時間內(nèi),共有2班公交車到達(dá)該站,到站的時間分別為7:05,7:15,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學(xué)的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某工廠抽取50名工人進(jìn)行調(diào)查,發(fā)現(xiàn)他們一天加工零件的個數(shù)在50至350之間,現(xiàn)按生產(chǎn)的零件個數(shù)將他們分成六組,第一組[50,100),第二組[100,150),第三組[150,200),第四組[200,250),第五組[250,300),第六組[300,350],相應(yīng)的樣本頻率分布直方圖如圖所示.

(1)求頻率分布直方圖中x的值;

(2)設(shè)位于第六組的工人為拔尖工,位于第五組的工人為熟練工,現(xiàn)用分層抽樣的方法在這兩類工人中抽取一個容量為6的樣本,從樣本中任意取兩個,求至少有一個拔尖工的概率.

查看答案和解析>>

同步練習(xí)冊答案