6.已知{an}為等差數(shù)列,且前19項(xiàng)的和為S19=190,則a10=10.

分析 由等差數(shù)列的性質(zhì)可得:a1+a19=2a10.再利用求和公式即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:a1+a19=2a10
∴S19=190=$\frac{19({a}_{1}+{a}_{19})}{2}$=19a10,則a10=10.
故答案為:10.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其求和公式與性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖所示,AB是圓O的直徑,直線MN切圓O于C,CD⊥AB,AM⊥MN,BN⊥MN,給出下列四個(gè)結(jié)論:
①∠1=∠2=∠3;②AM•CN=CM•BN;③CM=CD=CN;④△ACM∽△ABC∽△CBN.
則其中正確結(jié)論的序號(hào)是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.?dāng)?shù)列{an}滿足a1=1,an+1+(-1)nan=2n,則{an}的前100項(xiàng)和為5100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,一簡(jiǎn)單幾何體ABCDE的一個(gè)面ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC⊥平面ABC.若AC=BC=BE=2,
(1)BE邊上是否存在一點(diǎn)M,使得AD和CM的夾角為60°?
(2)求銳二面角O-CE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在Rt△ABC中,∠BAC=90°,AB=2,AC=6,D為AC邊上的中點(diǎn),E為BC邊上一點(diǎn),且$\overrightarrow{BE}$=$λ\overrightarrow{BC}$(0<λ<1).
(1)當(dāng)$λ=\frac{1}{2}$時(shí),若$\overrightarrow{AE}$=x$\overrightarrow{BD}$+y$\overrightarrow{AC}$,求x,y的值;
(2)當(dāng)AE⊥BD時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinωx,2cosωx),$\overrightarrow$=(2cosωx,cosωx)(ω∈N*),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$+k,且f(x)圖象中相鄰兩條對(duì)稱軸間的距離不小于$\frac{π}{2}$.求f(x)的單調(diào)遞減區(qū)間,若f(x)=0在x∈[0,$\frac{π}{2}$]上有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,用A、B、C三個(gè)不同的元件連接成一個(gè)系統(tǒng)N,已知每個(gè)元件正常工作的概率都是0.8,則此系統(tǒng)N正常工作的概率為0.928.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為:$\left\{\begin{array}{l}x=2+tcosα\\ y=\sqrt{3}+tsinα\end{array}$(t為參數(shù),其中0<α<$\frac{π}{2}$),橢圓M的參數(shù)方程為$\left\{\begin{array}{l}x=2cosβ\\ y=sinβ\end{array}$(β為參數(shù)),圓C的標(biāo)準(zhǔn)方程為(x-1)2+y2=1.
(1)寫出橢圓M的普通方程;
(2)若直線l為圓C的切線,且交橢圓M于A,B兩點(diǎn),求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.有6位身高互不相同的學(xué)生與一位老師排成一排拍照,現(xiàn)老師排在最中間,學(xué)生從中間到兩邊都按身高從高到低排列,則所有的排列方法種數(shù)為( 。
A.26B.A${\;}_{6}^{6}$C.A${\;}_{6}^{3}$D.C${\;}_{6}^{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案