1.如圖,在平面直角坐標(biāo)系xOy中.橢圓C:$\frac{x^2}{2}$+y2=1的右焦點(diǎn)為F,直線為l:x=2
(1)求到點(diǎn)F和直線l的距離相等的點(diǎn)G的軌跡方程.
(2)過(guò)點(diǎn)F作直線交橢圓C于點(diǎn)A,B,又直線OA交l于點(diǎn)T,若$\overrightarrow{OT}=2\overrightarrow{OA}$,求線段AB的長(zhǎng);
(3)已知點(diǎn)M的坐標(biāo)為(x0,y0),x0≠0,直線OM交直線$\frac{{{x_0}x}}{2}$+y0y=1于點(diǎn)N,且和橢圓C的一個(gè)交點(diǎn)為點(diǎn)P,是否存在實(shí)數(shù)λ,使得${\overrightarrow{OP}^2}=λ\overrightarrow{OM}•\overrightarrow{ON}$?,若存在,求出實(shí)數(shù)λ;若不存在,請(qǐng)說(shuō)明理由.

分析 (1)設(shè)G(x,y),由點(diǎn)G到點(diǎn)F和直線l的距離相等,列出方程,能求出點(diǎn)G的軌跡方程.
(2)由題意得xA=xF=c=1,將xA=1代入$\frac{{x}^{2}}{2}+{y}^{2}$=1,能求出AB.
(3)假設(shè)存在實(shí)數(shù)λ滿(mǎn)足題意,由已知得OM:$y=\frac{{y}_{0}}{{x}_{0}}x$,$\frac{{x}_{0}x}{2}+{y}_{0}y=1$,橢圓C:$\frac{{x}^{2}}{2}+{y}^{2}=1$,分別聯(lián)立方程組,能推導(dǎo)出存在實(shí)數(shù)λ=1,使得${\overrightarrow{OP}^2}=λ\overrightarrow{OM}•\overrightarrow{ON}$.

解答 解:(1)∵橢圓C:$\frac{x^2}{2}$+y2=1的右焦點(diǎn)為F,直線為l:x=2,∴F(1,0),
設(shè)G(x,y),∵點(diǎn)G到點(diǎn)F和直線l的距離相等,
∴$\sqrt{(x-1)^{2}+{y}^{2}}$=|x-2|,
整理,得y2=-2x+3.
∴點(diǎn)G的軌跡方程為y2=-2x+3.
(2)∵過(guò)點(diǎn)F作直線交橢圓C于點(diǎn)A,B,又直線OA交l于點(diǎn)T,$\overrightarrow{OT}=2\overrightarrow{OA}$,
∴AB⊥x軸,由題意得xA=xF=c=1,
∴將xA=1代入$\frac{{x}^{2}}{2}+{y}^{2}$=1,解得|yA|=$\frac{\sqrt{2}}{2}$,
∴AB=$\sqrt{2}$.
(3)假設(shè)存在實(shí)數(shù)λ滿(mǎn)足題意,
由已知得OM:$y=\frac{{y}_{0}}{{x}_{0}}x$,①,$\frac{{x}_{0}x}{2}+{y}_{0}y=1$,②,橢圓C:$\frac{{x}^{2}}{2}+{y}^{2}=1$,③
由①②,得${x}_{N}=\frac{2{x}_{0}}{{{x}_{0}}^{2}+2{{y}_{0}}^{2}}$,${y}_{N}=\frac{2{y}_{0}}{{{x}_{0}}^{2}+2{{y}_{0}}^{2}}$,
由①③,得${{x}_{P}}^{2}=\frac{2{{x}_{0}}^{2}}{{{x}_{0}}^{2}+2{{y}_{0}}^{2}}$,${{y}_{P}}^{2}=\frac{2{{y}_{0}}^{2}}{{{x}_{0}}^{2}+2{{y}_{0}}^{2}}$,
∴${\overrightarrow{OP}}^{2}={{x}_{P}}^{2}+{{y}_{P}}^{2}$=$\frac{2{{x}_{0}}^{2}}{{{x}_{0}}^{2}+2{{y}_{0}}^{2}}+\frac{2{{y}_{0}}^{2}}{{{x}_{0}}^{2}+2{{y}_{0}}^{2}}$=$\frac{2({{x}_{0}}^{2}+{{y}_{0}}^{2})}{{{x}_{0}}^{2}+2{{y}_{0}}^{2}}$,
$\overrightarrow{OM}•\overrightarrow{ON}$=x0xN+y0yN=$\frac{2{{x}_{0}}^{2}}{{{x}_{0}}^{2}+2{{y}_{0}}^{2}}+\frac{2{{y}_{0}}^{2}}{{{x}_{0}}^{2}+2{{y}_{0}}^{2}}$=$\frac{2({{x}_{0}}^{2}+{{y}_{0}}^{2})}{{{x}_{0}}^{2}+2{{y}_{0}}^{2}}$.
∴存在實(shí)數(shù)λ=1,使得${\overrightarrow{OP}^2}=λ\overrightarrow{OM}•\overrightarrow{ON}$.

點(diǎn)評(píng) 本題考查點(diǎn)的軌跡方程的求法,考查線段長(zhǎng)的求法,考查滿(mǎn)足條件的實(shí)數(shù)是否存在的判斷與求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A={x|y=log2(x-1)},B={x|x<2},則A∩B=( 。
A.{x|0<x<2}B.{x|1<x<2}C.{x|1≤x<2}D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f(x)=$\frac{x}{1+x}$,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,則f2017(x)的表達(dá)式為f2017(x)=$\frac{x}{1+2017x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知奇函數(shù)f(x)(x∈D),當(dāng)x>0時(shí),f(x)≤f(1)=2,給出下列命題:
①D=[-1,1];
②對(duì)?x∈D,|f(x)|≤2;
③?x0∈D,使得f(x0)=0;
④?x1∈D,使得f(x1)=1.
其中所有正確命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,…,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為4元/件,假定甲、乙兩廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)
(1)已知甲廠產(chǎn)品的等級(jí)系數(shù)X1的概率分布列如表所示:
X15678
P0.4ab0.1
且X1的數(shù)字期望EX1=6,求a,b的值;
(2)為分析乙廠產(chǎn)品的等級(jí)系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,求等級(jí)系數(shù)X2的數(shù)學(xué)期望.
(3)在(1)、(2)的條件下,若以“性?xún)r(jià)比”為判斷標(biāo)準(zhǔn),則哪個(gè)工廠的產(chǎn)品更具可購(gòu)買(mǎi)性?說(shuō)明理由.
注:①產(chǎn)品的“性?xún)r(jià)比”=產(chǎn)品的等級(jí)系數(shù)的數(shù)學(xué)期望/產(chǎn)品的零售價(jià);
②“性?xún)r(jià)比”大的產(chǎn)品更具可購(gòu)買(mǎi)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=sin(2πsinx),x∈(-$\frac{π}{2}$,$\frac{π}{2}$)的所有零點(diǎn)之和為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsinθ=2acos θ(a>0),過(guò)點(diǎn)P(-2,-4)的直線L的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=4+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,t(為參數(shù)),直線L與曲線C分別交于M,N兩點(diǎn).
(1)寫(xiě)出曲線C的平面直角坐標(biāo)方程和直線L的普通方程;
(2)若PM,MN,PN成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=|x-a|-$\frac{4}{x}$+a-3(a∈R)有且僅有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),且2x2=x1+x3,則a=-$\frac{11}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.cos263°cos203°+sin83°sin23°的值為(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案