分析 (1)利用余弦定理計(jì)算BD,B1D,再由勾股定理的逆定理得出BD⊥B1D,由AB⊥平面BB1C1C得出AB⊥B1D,于是得出B1D⊥平面ABD;
(2)以B為原點(diǎn)建立坐標(biāo)系,求出平面AB1D的法向量$\overrightarrow{{n}_{1}}$,平面A1B1D的法向量$\overrightarrow{{n}_{2}}$,計(jì)算cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{{n}_{2}}$>即可得出二面角的余弦值.
解答 證明:(1)∵BC=B1C1=1,CD=C1D=$\frac{1}{2}$BB1=1,∠BCC1=$\frac{π}{3}$,∠B1C1D=π-∠BCC1=$\frac{2π}{3}$,
∴BD=1,B1D=$\sqrt{3}$,
∴BB12=BD2+B1D2,∴BD⊥B1D.
∵AB⊥平面BB1C1C,BD?平面BB1C1C,
∴AB⊥B1D,又AB?平面ABD,BD?平面ABD,AB∩BD=B,
∴DB1⊥平面ABD.
(2)以B為原點(diǎn),以BB1,BA所在直線為x軸,z軸建立空間直角坐標(biāo)系B-xyz,如圖所示:
則A(0,0,2),D($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,0),B1(2,0,0),A1(2,0,2),
∴$\overrightarrow{D{B}_{1}}$=($\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$,0),$\overrightarrow{{B}_{1}A}$=(-2,0,2),$\overrightarrow{{B}_{1}{A}_{1}}$=(0,0,2).
設(shè)平面AB1D的法向量為$\overrightarrow{{n}_{1}}$=(x1,y1,z1),平面A1B1D的法向量為$\overrightarrow{{n}_{2}}$=(x2,y2,z2),
則$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{D{B}_{1}}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{{B}_{1}A}=0}\end{array}\right.$,$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{D{B}_{1}}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{{B}_{1}{A}_{1}}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{\frac{3}{2}{x}_{1}-\frac{\sqrt{3}}{2}{y}_{1}=0}\\{-2{x}_{1}+2{z}_{1}=0}\end{array}\right.$,$\left\{\begin{array}{l}{\frac{3}{2}{x}_{2}-\frac{\sqrt{3}}{2}{y}_{2}=0}\\{2{z}_{2}=0}\end{array}\right.$,
令x1=1得$\overrightarrow{{n}_{1}}$=(1,$\sqrt{3}$,1),令x2=1得$\overrightarrow{{n}_{2}}$=(1,$\sqrt{3}$,0).
∴cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$=$\frac{4}{\sqrt{5}×2}$=$\frac{2\sqrt{5}}{5}$.
∵二面角A-B1D-A1是銳角,
∴二面角A-B1D-A1的平面角的余弦值為$\frac{2\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查了線面垂直的判定,二面角的計(jì)算與空間向量的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 定義域是$\{x|x≠kπ+\frac{π}{6},(k∈Z)\}$ | B. | 值域是R | ||
C. | 在其定義域上是增函數(shù) | D. | 最小正周期是π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | -60° | C. | 30° | D. | -30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6π}}{6}$ | B. | $\frac{\sqrt{π}}{2}$ | C. | $\frac{\sqrt{2π}}{2}$ | D. | $\frac{3\sqrt{π}}{2π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}x±y=0$ | B. | x±y=0 | C. | 2x±y=0 | D. | $\sqrt{3}x±y=0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.1 | B. | 0.2 | C. | 0.4 | D. | 0.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com