分析 (1)利用等差數(shù)列的性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系即可得出.
(2)利用等差數(shù)列的通項公式與求和公式即可得出.
解答 解。1)設(shè)等差數(shù)列{an}的公差為d,且d>0,
由等差數(shù)列的性質(zhì),得a2+a5=a3+a4=22,
所以a3,a4是關(guān)于x 的方程x2-22x+117=0的解,
所以a3=9,a4=13,易知a1=1,d=4,故通項為an=1+(n-1)×4=4n-3.…(6分)
(2)∵an=4n-3,∴an+1=4n-2.
∴數(shù)列{an+1}是以2為首項,4為公差的等差數(shù)列,
其前n項和=2n+$\frac{n(n-1)}{2}×4$=2n2.
點評 本題考查了等差數(shù)列的性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系、等差數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{5}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3n}{10(10-3n)}$ | B. | $\frac{n}{10(10-3n)}$ | C. | $\frac{n}{10-3n}$ | D. | $\frac{n}{10(13-3n)}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4031 | B. | 4032 | C. | 4033 | D. | 4034 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com