5.設變量x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≤0}\\{x+2y≤3}\\{4x-y≥-6}\end{array}}\right.$,則z=x-2y的最小值為-5.

分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可.

解答 解:變量x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≤0}\\{x+2y≤3}\\{4x-y≥-6}\end{array}}\right.$的可行域如圖:
由z=x-2y得y=$\frac{1}{2}$x-$\frac{1}{2}z$,
平移直線y=$\frac{1}{2}$x-$\frac{z}{2}$,
由圖象可知當直線y=$\frac{1}{2}$x-$\frac{z}{2}$,過點A時,
直線y=$\frac{1}{2}$x-$\frac{z}{2}$的截距最大,此時z最小,
由$\left\{\begin{array}{l}{x+2y=3}\\{4x-y=-6}\end{array}\right.$得A(-1,2),
代入目標函數(shù)z=x-2y,
得z=-1-4=-5.
∴目標函數(shù)z=x-2y的最小值是-5.
故答案為:-5.

點評 本題主要考查線性規(guī)劃的基本應用,利用目標函數(shù)的幾何意義是解決問題的關鍵,利用數(shù)形結合是解決問題的基本方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.若曲線f(x)=ax+$\frac{1}{2}$x+lnx在點(1,f(1))處的切線與y=$\frac{7}{2}$x-1平行,則a=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知公差大于零的等差數(shù)列{an}的前n項和為Sn,且滿足a3•a4=117,a2+a5=22.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an+1}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若k∈R,則“k>1”是方程“$\frac{x^2}{k-1}+\frac{y^2}{k+1}=1$”表示橢圓的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知等差數(shù)列{an}的前n項和為Sn,公差為d,若a1<0,S12=S6,下列說法正確的是( 。
A.d<0B.S19<0
C.當n=9時Sn取最小值D.S10>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且滿足a1=1,an+1=2$\sqrt{S_n}+1,n∈{N^*}$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{bn}滿足bn=$\frac{{4{n^2}}}{{{a_n}{a_{n+1}}}}$,設數(shù)列{bn}的前n項和為Tn,若?n∈N*,不等式Tn-na<0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知實數(shù)x,y滿足方程(x-2)2+(y-2)2=1.
(1)求$\frac{2x+y-1}{x}$的取值范圍;
(2)求|x+y+l|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在無重復數(shù)字的五位數(shù)a1a2a3a4a5中,若a1<a2,a2>a3,a3<a4,a4>a5時稱為波形數(shù),如89674就是一個波形數(shù),由1,2,3,4,5組成一個沒有重復數(shù)字的五位數(shù)是波形數(shù)的概率是$\frac{2}{15}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和Sn滿足:Sn=An2+Bn,且a1=2,a2=5.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案