分析 (1)求出函數(shù)的導(dǎo)數(shù),通過討論b的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)構(gòu)造函數(shù)h(x)=ex-e-x-2asinx,x∈(0,π),通過討論a的范圍確定函數(shù)的單調(diào)性,從而求出a的范圍.
解答 解:(1)$f'(x)={e^x}-b{e^{-x}}=\frac{{{{({e^x})}^2}-b}}{e^x}$
①當(dāng)b≤0時(shí),f'(x)≥0,所以f(x)的增區(qū)間為(-∞,+∞);
②當(dāng)b>0時(shí),減區(qū)間為$(-∞,\frac{1}{2}lnb)$,增區(qū)間為$(\frac{1}{2}lnb,+∞)$.
(2)由題意得ex-e-x-2asinx>0,x∈(0,π)恒成立,
構(gòu)造函數(shù)h(x)=ex-e-x-2asinx,x∈(0,π)
顯然a≤0時(shí),ex-e-x-2asinx>0,x∈(0,π)恒成立,
下面考慮a>0時(shí)的情況:h(0)=0,h′(x)=ex+e-x-2acosx,h′(0)=2-2a,
當(dāng)0<a≤1時(shí),h′(x)≥0,所以h(x)=ex-e-x-2asinx在(0,π)為增函數(shù),
所以h(x)>h(0)=0,即0<a≤1滿足題意;
當(dāng)a>1時(shí),h′(0)=2-2a<0,又$h'(\frac{π}{2})>0$,
所以一定存在${x_0}∈(0,\frac{π}{2})$,h′(x0)=0,且h′(x)<0,x∈(0,x0),
所以h(x)在(0,x0)單調(diào)遞減,所以h(x)<h(0)=0,
x∈(0,x0),不滿足題意.
綜上,a取值范圍為(-∞,1].
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及三角函數(shù)問題,是一道綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=±\frac{{\sqrt{3}}}{4}x$ | B. | $y=±\frac{{\sqrt{2}}}{4}x$ | C. | $y=±\frac{1}{2}x$ | D. | $y=±\frac{1}{3}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,3) | B. | [2,3) | C. | (1,3) | D. | [1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在(-∞,0)上為減函數(shù) | B. | 在x=1處取極小值 | ||
C. | 在x=2處取極大值 | D. | 在(4,+∞)上為減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)>g(x) | B. | f(x)+g(3)<g(x)+f(3) | C. | f(x)<g(x) | D. | f(x)+g(7)<g(x)+f(7) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com