9.若直線x=m(m>1)與函數(shù)f(x)=logax,g(x)=logbx的圖象及x軸分別交于A,B,C三點(diǎn).若|AB|=2|BC,則|( 。
A.b=a2或a=b2B.a=b-1或a=b3C.a=b-1或b=a3D.a=b3

分析 由條件便可得到|AB|=|logam-logbm|,|BC|=|logbm|,都換成以m為底,再由|AB|=2|BC|即可得到$|\frac{lo{g}_{m}b-lo{g}_{m}a}{lo{g}_{m}a}|=2$,進(jìn)一步即可得到logmb-logma=±2logma,進(jìn)行對(duì)數(shù)式的運(yùn)算即可得出a,b的關(guān)系,從而找出正確選項(xiàng).

解答 解:根據(jù)條件,|AB|=|logam-logbm|=$|\frac{1}{lo{g}_{m}a}-\frac{1}{lo{g}_{m}b}|=|\frac{lo{g}_{m}b-lo{g}_{m}a}{lo{g}_{m}a•lo{g}_{m}b}|$,
$|BC|=|lo{g}_m|=\frac{1}{|lo{g}_{m}b|}$;
∵|AB|=2|BC|;
∴$|\frac{lo{g}_{m}b-lo{g}_{m}a}{lo{g}_{m}a•lo{g}_{m}b}|=\frac{2}{|lo{g}_{m}b|}$;
∴$|\frac{lo{g}_{m}b-lo{g}_{m}a}{lo{g}_{m}a}|=2$;
∴|logmb-logma|=2|logma|;
∴l(xiāng)ogmb-logma=±2logma;
∴l(xiāng)ogma=-logmb或logmb=3logma;
∴a=b-1,或b=a3
故選C.

點(diǎn)評(píng) 考查對(duì)數(shù)函數(shù)的圖象,清楚x=m的圖象,橫坐標(biāo)相等的兩點(diǎn)間距離的求法,以及對(duì)數(shù)的換底公式,對(duì)數(shù)式的運(yùn)算性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2-t}\\{y=2-\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+4ρsinθ=3,直線l與曲線C交于A,B兩點(diǎn).
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+c≥0}\end{array}\right.$目標(biāo)函數(shù)z=6x+2y的最小值是10,則z的最大值是( 。
A.20B.22C.24D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖所示,已知圓O的圓心為O,E為圓O上的一點(diǎn),P為圓O外的一點(diǎn),PAB為圓O的一條割線,連接PE,OE,OB,BE,AE.得OE⊥PE,且PC交BE、AE于C、D,∠APC=∠EPC.
(1)求證:$\frac{PA}{PE}=\frac{ED}{BC}$;
(2)若∠ADC=110°,求∠CED的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.對(duì)任意x,y∈R,恒有$sinx+cosy=2sin(\frac{x-y}{2}+\frac{π}{4})cos(\frac{x+y}{2}-\frac{π}{4})$,則$sin\frac{7π}{24}cos\frac{13π}{24}$等于(  )
A.$\frac{{1+\sqrt{2}}}{4}$B.$\frac{{1-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=x2-2alnx.
(1)求f(x)的極值;
(2)當(dāng)a>0時(shí),函數(shù)g(x)=f(x)-2ax有唯一零點(diǎn),試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(1+sin2x,sinx-cosx),$\overrightarrow$=(1,sinx+cosx),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值及取得最大值相應(yīng)的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行問(wèn)卷調(diào)查得到了如下的列聯(lián)表,在50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為$\frac{3}{5}$.
喜愛打籃球不喜愛打籃球合計(jì)
男生5
女生10
合計(jì)50
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說(shuō)明你的理由;
(3)已知喜愛打籃球的10位女生中,A1,A2,A3還喜歡打羽毛球,B1,B2還喜歡打乒乓球,C1,C2還喜歡踢足球,現(xiàn)再?gòu)南矚g打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進(jìn)行其他方面的調(diào)查,求B1和C1不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=3,4Sn+1=6an+1-an+4Sn,則數(shù)列{an}的通項(xiàng)公式為an=3•($\frac{1}{2}$)n-1,n∈N

查看答案和解析>>

同步練習(xí)冊(cè)答案