已知函數(shù)在其定義域上滿足
(1)函數(shù)的圖象是否是中心對稱圖形?若是,請指出其對稱中心(不證明);
(2)當(dāng)時,求x的取值范圍;
(3)若,數(shù)列滿足,那么:
①若,正整數(shù)N滿足時,對所有適合上述條件的數(shù)列,恒成立,求最小的N;
②若,求證:
解:(1)依題意有.若,則,得,這與矛盾,∴,∴,故的圖象是中心對稱圖形,其對稱中心為點(diǎn)
(2)∵,∴又∵,∴

(3)①由,∴.由
.令,則,又∵,∴,∴
,∴,∴當(dāng)時,
【或∵,∴
又∵也符合,∴,即,得.要使恒成立,只需,即,∴.故滿足題設(shè)要求的最小正整數(shù)
② 由①知,∴,
,∴當(dāng)時,不等式成立.
證法1:∵,∴當(dāng)時,



證法2:∵,∴當(dāng)時,

證法3:∵,∴當(dāng)時,

證法4:當(dāng)時,∵,∴
,∴

證法5:∵,∴當(dāng)時,
綜上,對任意的,都有
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)等差數(shù)列項(xiàng)和為,則有以下性質(zhì):成等差數(shù)列.
(1) 類比等差數(shù)列的上述性質(zhì),寫出等比數(shù)列項(xiàng)積的類似性質(zhì);
(2) 證明(1)中所得結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(文)已知等差數(shù)列的公差是,是該數(shù)列的前項(xiàng)和.
(1)求證:;
(2)利用(1)的結(jié)論求解:“已知,求”;
(3)若各項(xiàng)均為正數(shù)的等比數(shù)列的公比為,前項(xiàng)和為.試類比問題(1)的結(jié)論,給出一個相應(yīng)的結(jié)論并給出證明.并利用此結(jié)論求解問題:“已知各項(xiàng)均為正數(shù)的等比數(shù)列,其中,,求數(shù)列的前項(xiàng)和.”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知數(shù)列滿足
(1)計算
(2)求數(shù)列的通項(xiàng)公式;
(3)已知,設(shè)是數(shù)列的前項(xiàng)積,若恒成立,求實(shí)數(shù)m的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知各項(xiàng)均為正數(shù)的數(shù)列中,是數(shù)列的前項(xiàng)和,對任意,有,則數(shù)列的通項(xiàng)公式為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列的通項(xiàng)公式為達(dá)到最小時,=______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),若數(shù)列滿足,數(shù)列項(xiàng)和為,則 (     )
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(文)已知數(shù)列中,,則的通項(xiàng)公式是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是首項(xiàng)為19,公差為-2的等差數(shù)列,的前項(xiàng)和.
(Ⅰ)求通項(xiàng);
(Ⅱ)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案