【題目】設函數(shù).
(Ⅰ)若當時取得極值,求a的值及的單調區(qū)間;
(Ⅱ)若存在兩個極值點,,證明:.
【答案】(Ⅰ).單調增區(qū)間為,單調減區(qū)間為.(Ⅱ)見解析
【解析】
(1)求導數(shù),由題意可知為方程的根,求解值,再令導數(shù),,分別求解單調增區(qū)間與單調減區(qū)間,即可.
(2)函數(shù)存在兩個極值點,等價于方程即在上有兩個不等實根,則,即可,再將變形整理為;若證明不等式,則需證明,由變形為,不妨設,即證,令,則,求函數(shù)的取值范圍,即可證明.
(Ⅰ)
∵時,取得極值,
∴,.
∴
由得或,
由得
∴的單調增區(qū)間為和,單調減區(qū)間為.
(Ⅱ)
∵存在兩個極值點,
∴方程即在上有兩個不等實根
∴且,
∴所證不等式等價于
即變形為
不妨設,即變形為
令,變形為,
令
則,
∴在上遞增.
∴,
∴成立,
∴成立.
科目:高中數(shù)學 來源: 題型:
【題目】第24屆冬奧會將于2022年2月4日至2月22日在北京市和河北省張家口市聯(lián)合舉行,這是中國歷史上第一次舉辦冬季奧運會.為了宣傳冬奧會,讓更多的人了解、喜愛冰雪項目,某校高三年級舉辦了冬奧會知識競賽(總分100分),并隨機抽取了名中學生的成績,繪制成如圖所示的頻率分布直方圖.已知前三組的頻率成等差數(shù)列,第一組和第五組的頻率相同.
(Ⅰ)求實數(shù),的值,并估計這名中學生的成績平均值;(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(Ⅱ)已知抽取的名中學生中,男女生人數(shù)相等,男生喜歡花樣滑冰的人數(shù)占男生人數(shù)的,女生喜歡花樣滑冰項的人數(shù)占女生人數(shù)的,且有95%的把握認為中學生喜歡花樣滑冰與性別有關,求的最小值.
參考數(shù)據(jù)及公式如下:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高二某班共有45人,學號依次為1、2、3、…、45,現(xiàn)按學號用系統(tǒng)抽樣的辦法抽取一個容量為5的樣本,已知學號為6、24、33的同學在樣本中,那么樣本中還有兩個同學的學號應為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農村建設取得巨大進步,農民年收入也逐年增加,為了制定提升農民收入、實現(xiàn)2020年脫貧的工作計劃,該地扶貧辦統(tǒng)計了2019年50位農民的年收入并制成如下頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,估計50位農民的平均年收入(單位:千元);(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);
(2)由頻率分布直方圖,可以認為該貧困地區(qū)農民年收入X服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計算得=6.92,利用該正態(tài)分布,求:
①在扶貧攻堅工作中,若使該地區(qū)約有占總農民人數(shù)的的農民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入標準大約為多少千元?
②為了調研“精準扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了1000位農民.若每位農民的年收入互相獨立,問:這1000位農民中的年收入不少于12.14千元的人數(shù)最有可能是多少?
附參考數(shù)據(jù):,若隨機變量X服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線,經(jīng)過點的直線與該雙曲線交于兩點.
(1)若與軸垂直,且,求的值;
(2)若,且的橫坐標之和為,證明:.
(3)設直線與軸交于點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,為坐標原點,,,已知是以為底邊,且邊平行于軸的等腰三角形.
(1)求動點的軌跡的方程;
(2)已知直線交軸于點,且與曲線相切于點,點在曲線上,且直線軸,點關于點的對稱點為點,試判斷點、、三點是否共線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的四棱錐中,底面為矩形,平面,,M,N分別是,的中點.
(1)求證:平面;
(2)若直線與平面所成角的余弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】互聯(lián)網(wǎng)正在改變著人們的生活方式,在日常消費中手機支付正逐漸取代現(xiàn)金支付成為人們首選的支付方式. 某學生在暑期社會活動中針對人們生活中的支付方式進行了調查研究. 采用調查問卷的方式對100名18歲以上的成年人進行了研究,發(fā)現(xiàn)共有60人以手機支付作為自己的首選支付方式,在這60人中,45歲以下的占,在仍以現(xiàn)金作為首選支付方式的人中,45歲及以上的有30人.
(1)從以現(xiàn)金作為首選支付方式的40人中,任意選取3人,求這3人至少有1人的年齡低于45歲的概率;
(2)某商家為了鼓勵人們使用手機支付,做出以下促銷活動:凡是用手機支付的消費者,商品一律打八折. 已知某商品原價50元,以上述調查的支付方式的頻率作為消費者購買該商品的支付方式的概率,設銷售每件商品的消費者的支付方式都是相互獨立的,求銷售10件該商品的銷售額的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線與直線相切于點,點與關于軸對稱.
(1)求拋物線的方程及點的坐標;
(2)設是軸上兩個不同的動點,且滿足,直線、與拋物線的另一個交點分別為,試判斷直線與直線的位置關系,并說明理由.如果相交,求出的交點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com