A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 取BD的中點G,連結(jié)EG、FG,則EG∥AD,F(xiàn)G∥BC,從而∠EGF是θ(或θ的補角),由此利用余弦定理能求出sinθ.
解答 解:如圖,取BD的中點G,連結(jié)EG、FG,
∵E、F分別是AB,CD的中點,
∴EG∥AD,F(xiàn)G∥BC,
∵AD=BC=2,AD與BC所成的角為θ,EF=$\sqrt{3}$,
∴∠EGF是θ(或θ的補角),
∴在△EFG中,EG=FG=1,EF=$\sqrt{3}$,
∴cos∠EGF=$\frac{E{G}^{2}+F{G}^{2}-E{F}^{2}}{2EG•FG}$=$\frac{1+1-3}{2}$=-$\frac{1}{2}$,
∴sinθ=$\sqrt{1-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$.
故選:D.
點評 本題考查異面直線所成角的正弦值、余弦定理等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{5}{4}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 1或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30 | B. | 56 | C. | 68 | D. | 78 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com