【題目】在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P(x,y)的坐標(biāo)滿足(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線l的極坐標(biāo)方程為ρsin(θ+φ)=cosφ(其中φ為常數(shù),且φ)
(1)求動(dòng)點(diǎn)P的軌跡C的極坐標(biāo)方程;
(2)設(shè)直線l與軌跡C的交點(diǎn)為A,B,兩點(diǎn),求證:當(dāng)φ變化時(shí),∠AOB的大小恒為定值.
【答案】(1)ρ(2)證明見解析
【解析】
(1)將動(dòng)點(diǎn)P(x,y)的參數(shù)方程化簡(jiǎn)為普通方程,再轉(zhuǎn)化為極坐標(biāo)方程得到答案。
(2)將直線l與曲線C聯(lián)立,消去ρ得sin(θ+φ)=cosφ,化簡(jiǎn)得到tan2θ+tanφtanθ﹣1=0,利用韋達(dá)定理計(jì)算得到答案。
(1)∵動(dòng)點(diǎn)P(x,y)的坐標(biāo)滿足(t為參數(shù)),
∴動(dòng)點(diǎn)P的軌跡C的普通方程為y=x2,又由x=ρcosθ,y=ρsinθ,∴為sinθ=ρcos2θ
∴動(dòng)點(diǎn)P的軌跡C的極坐標(biāo)方程為sinθ=ρcos2θ,即ρ.
(2)證明:將直線l與曲線C聯(lián)立,消去ρ得sin(θ+φ)=cosφ,
∴得(sinθcosφ+cosθsinφ)=cosφ,∵φ,∴cosφ≠0,
∴tan2θ+tanφtanθ﹣1=0,
設(shè)A(ρ1,θ1),B(ρ2,θ2),由韋達(dá)定理得tanθ1tanθ2=﹣1,即sinθ1sinθ2=﹣cosθ1cosθ2,
∴cosθ1cosθ2+sinθ1sinθ2=cos(θ1﹣θ2)=0,
∴θ1﹣θ2=kπ,k∈Z
故當(dāng)φ變化時(shí),∠AOB的大小恒為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),是自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),求的單調(diào)增區(qū)間;
(2)若對(duì)任意的,(),求的最大值;
(3)若的極大值為,求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a(x﹣1)﹣lnx(a∈R),g(x)=(1﹣x)ex.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對(duì)任意給定的x0∈[﹣1,1],在區(qū)間(0,e]上總存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年春節(jié)期間,當(dāng)紅影視明星翟天臨“不知”“知網(wǎng)”學(xué)術(shù)不端事件在全國(guó)鬧得沸沸揚(yáng)揚(yáng),引發(fā)了網(wǎng)友對(duì)亞洲最大電影學(xué)府北京電影學(xué)院乃至整個(gè)中國(guó)學(xué)術(shù)界高等教育亂象的反思.為進(jìn)一步端正學(xué)風(fēng),打擊學(xué)術(shù)造假行為,教育部日前公布的2019年部門預(yù)算中透露,2019年教育部擬抽檢博士學(xué)位論文約篇,預(yù)算為萬元.國(guó)務(wù)院學(xué)位委員會(huì)、教育部2014年印發(fā)的《博士碩士學(xué)位論文抽檢辦法》通知中規(guī)定:每篇抽檢的學(xué)位論文送位同行專家進(jìn)行評(píng)議,位專家中有位以上(含位)專家評(píng)議意見為“不合格”的學(xué)位論文,將認(rèn)定為“存在問題學(xué)位論文”;有且只有位專家評(píng)議意見為“不合格”的學(xué)位論文,將再送位同行專家進(jìn)行復(fù)評(píng). 位復(fù)評(píng)專家中有位以上(含位)專家評(píng)議意見為“不合格”的學(xué)位論文,將認(rèn)定為“存在問題學(xué)位論文”設(shè)每篇學(xué)位論文被每位專家評(píng)議為“不合格”的概率均為且各篇學(xué)位論文是否被評(píng)議為“不合格”相互獨(dú)立.
(1)相關(guān)部門隨機(jī)地抽查了位博士碩士的論文,每人一篇,抽檢是否合格,抽檢得到的部分?jǐn)?shù)據(jù)如下表所示:
合格 | 不合格 | |
博士學(xué)位論文 | ||
碩士學(xué)位論文 |
通過計(jì)算說明是否有的把握認(rèn)為論文是否合格與作者的學(xué)位高低有關(guān)系?
(2)若,記一篇抽檢的學(xué)位論文被認(rèn)定為“存在問題學(xué)位論文”的概率為,求的值;
(3)若擬定每篇抽檢論文不需要復(fù)評(píng)的評(píng)審費(fèi)用為元,需要復(fù)評(píng)的評(píng)審費(fèi)用為元;除評(píng)審費(fèi)外,其他費(fèi)用總計(jì)為萬元現(xiàn)以此方案實(shí)施,且抽檢論文為篇,問是否會(huì)超過預(yù)算?并說明理由.
臨界值表:
參考公式,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等腰梯形ABCD中,,,,O為BE中點(diǎn),F為BC中點(diǎn).將沿BE折起到的位置,如圖2.
(1)證明:平面;
(2)若平面平面BCDE,求點(diǎn)F到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)(其中):①若函數(shù)的一個(gè)對(duì)稱中心到與它最近一條對(duì)稱軸的距離為,則;②若函數(shù)在上單調(diào)遞增,則的范圍為;③若,則在點(diǎn)處的切線方程為 ;④若,,則的最小值為;⑤若,則函數(shù)的圖象向右平移個(gè)單位可以得到函數(shù)的圖象.其中正確命題的序號(hào)有_______.(把你認(rèn)為正確的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于,兩點(diǎn),且,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體有8個(gè)不同頂點(diǎn),現(xiàn)任意選擇其中4個(gè)不同頂點(diǎn),然后將它們兩兩相連,可組成平面圖形成空間幾何體.在組成的空間幾何體中,可以是下列空間幾何體中的________.(寫出所有正確結(jié)論的編號(hào))
①每個(gè)面都是直角三角形的四面體;
②每個(gè)面都是等邊三角形的四面體;
③每個(gè)面都是全等的直角三角形的四面體;
④有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊三角形的四面體.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com