【題目】已知圓,直線經(jīng)過(guò)點(diǎn)A (1,0).

(1)若直線與圓C相切,求直線的方程;

(2)若直線與圓C相交于PQ兩點(diǎn),求三角形CPQ面積的最大值,并求此時(shí)直線的方程.

【答案】(1)(2)yx-1或y=7x-7

【解析】試題分析:(1)由直線與圓相切可得圓心(3,4)到已知直線的距離等于半徑2,設(shè)直線點(diǎn)斜式方程,列方程可得斜率,最后驗(yàn)證斜率不存在時(shí)是否滿足條件(2)由垂徑定理可得弦長(zhǎng)PQ,而三角形的高為圓心到直線的距離d,所以,利用基本不等式求最值可得當(dāng)d時(shí),S取得最小值2,再根據(jù)點(diǎn)到直線距離公式求直線的斜率,即得的方程.

試題解析:(1)①若直線的斜率不存在,則直線,符合題意.

②若直線斜率存在,設(shè)直線,即.

由題意知,圓心(3,4)到已知直線的距離等于半徑2,

,解得,

所求直線方程為,或;

(2)直線與圓相交,斜率必定存在,且不為0,設(shè)直線方程為,

則圓心到直線的距離,

又∵三角形面積

∴當(dāng)d時(shí),S取得最小值2,則, ,

故直線方程為yx-1,或y=7x-7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)當(dāng)時(shí),求曲線處的切線方程;

)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中常數(shù)

1)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;

2)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,若內(nèi)恒成立,則稱為函數(shù)類對(duì)稱點(diǎn),當(dāng)時(shí),試問(wèn)是否存在類對(duì)稱點(diǎn),若存在,請(qǐng)至少求出一個(gè)類對(duì)稱點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸,焦距為2,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè),過(guò)橢圓左焦點(diǎn)的直線、兩點(diǎn),若對(duì)滿足條件的任意直線,不等式)恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人下棋比賽,規(guī)定誰(shuí)比對(duì)方先多勝兩局誰(shuí)就獲勝,比賽立即結(jié)束;若比賽進(jìn)行完6局還沒(méi)有分出勝負(fù)則判第一局獲勝者為最終獲勝且結(jié)束比賽.比賽過(guò)程中,每局比賽甲獲勝的概率為,乙獲勝的概率為,每局比賽相互獨(dú)立.求:(1)比賽兩局就結(jié)束且甲獲勝的概率;(2)恰好比賽四局結(jié)束的概率;(3)在整個(gè)比賽過(guò)程中,甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖,其中成績(jī)分組區(qū)間如下:

組號(hào)

第一組

第二組

第三組

第四組

第五組

分組

[50,60

[60,70

[7080

[80,90

[90,100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;

3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程x2y22(m3)x2(14m2)y16m490表示一個(gè)圓.

(1) 求實(shí)數(shù)m的取值范圍;

(2) 求該圓半徑r的取值范圍;

(3) 求該圓心的縱坐標(biāo)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中是實(shí)數(shù))

(1)求的單調(diào)區(qū)間;

(2)若設(shè),且有兩個(gè)極值點(diǎn),,求取值范圍.(其中為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案