【題目】某種新產(chǎn)品投放市場(chǎng)的100天中,前40天價(jià)格呈直線上升,而后60天其價(jià)格呈直線下降,現(xiàn)統(tǒng)計(jì)出其中4天的價(jià)格如下表:

時(shí)間

第4天

第32天

第60天

第90天

價(jià)格(千元)

23

30

22

7

(1)寫出價(jià)格關(guān)于時(shí)間的函數(shù)關(guān)系式;(表示投放市場(chǎng)的第天);

(2)銷售量與時(shí)間的函數(shù)關(guān)系:,則該產(chǎn)品投放市場(chǎng)第幾天銷售額最高?最高為多少千元?

【答案】(1);(2)天和第天,最高銷售額為(千元).

【解析】

試題分析:(1)直線上升或直線下降都是直線方程,利用直線方程兩點(diǎn)式求出兩段函數(shù)的解析式;(2)價(jià)格乘以銷售量等于銷售額,銷售額是二次函數(shù),利用二次函數(shù)的對(duì)稱軸求出最大值.

試題解析:

(1)由題意,設(shè)

同樣設(shè)

(2)

設(shè)該產(chǎn)品的日銷售額為

此時(shí)當(dāng)

此時(shí)

綜上,銷售額最高在第10天和第11天,最高銷售額為808.5(千元)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3-2x2-5x+6,用秦九韶算法,則f(10)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(a,a+1)在圓x2+y2=25內(nèi)部,那么a的取值范圍是( )
A.-4<a<3
B.-5<a<4
C.-5<a<5
D.-6<a<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰梯形中,,中點(diǎn), 點(diǎn)分別為的中點(diǎn), 沿折起到 的位置,使得平面平面(如圖 ).

(1)求證:

(2)求直線與平面所成角的正弦值;

(3)側(cè)棱上是否存在點(diǎn),使得平面?若存在,求出的值若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f x

1求a的值;

2求f f 2 的值;

3若fm=3,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,其中,是不為1的常數(shù).

)證明:若是遞增數(shù)列,則不可能是等差數(shù)列;

)證明:若是遞減的等比數(shù)列,則中的每一項(xiàng)都大于其后任意個(gè)項(xiàng)的和;

)若,且是遞增數(shù)列,是遞減數(shù)列,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求函數(shù)的零點(diǎn);

)求的單調(diào)區(qū)間;

)當(dāng)時(shí),若對(duì)恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在上的函數(shù),函數(shù),當(dāng)時(shí),取得極大值,且函數(shù)

的圖象關(guān)于點(diǎn)對(duì)稱.

(1)求函數(shù)的表達(dá)式;

(2)求證:當(dāng)時(shí), 為自然對(duì)數(shù)的底數(shù);

(3),數(shù)列中是否存在?若存在,求出所有相等的兩項(xiàng),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于用斜二測(cè)畫法畫直觀圖的說法中,正確的是( )
A.水平放置的正方形的直觀圖不可能是平行四邊形
B.平行四邊形的直觀圖仍是平行四邊形
C.兩條相交直線的直觀圖可能是平行直線
D.兩條垂直的直線的直觀圖仍互相垂直

查看答案和解析>>

同步練習(xí)冊(cè)答案