1.直線y=m與函數(shù)y=x2-3|x-2|-5x+1的圖象有3個交點,則m的值為-5或-6.

分析 作出函數(shù)的圖象,利用直線y=m與函數(shù)y=x2-3|x-2|-5x+1的圖象有3個交點,即可求出m的值.

解答 解:函數(shù)y=x2-3|x-2|-5x+1=$\left\{\begin{array}{l}{{x}^{2}-8x+7,x≥2}\\{{x}^{2}-2x-5,x<2}\end{array}\right.$,
函數(shù)圖象如圖所示,
x<2時,y=(x-1)2-6,
x2-8x+7=x2-2x-5,∴x=2,y=-5.
∵直線y=m與函數(shù)y=x2-3|x-2|-5x+1的圖象有3個交點,
∴m=-5或-6.
故答案為:-5或-6.

點評 本題考查函數(shù)的圖象,考查學生分析解決問題,正確作出函數(shù)的圖象是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.設等差數(shù)列{an}的公差d不為0,若對于任意i∈N*,行列式$|\begin{array}{l}{{a}_{i}}&{{a}_{i+1}}\\{{a}_{i+2}}&{{a}_{i+3}}\end{array}|$的值恒等于公差d,則d=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$(a>b>0)的離心率$e=\frac{{\sqrt{6}}}{3}$,過點A(0,-b)和B(a,0)的直線與原點的距離為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.且$\overrightarrow{DE}•\overrightarrow{EC}=0$,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.正方體ABCD-A1B1C1D1的棱長為2,點M是棱AB上異于點A的一點,點P是平面ABCD內(nèi)的一動點,且點P到直線A1D1的距離的平方比到點M的距離的平方大4,則點P的軌跡形狀為( 。
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知首項為1的正項數(shù)列{an}滿足:an+12+an2<$\frac{5}{2}$an+1an,n∈N*
(1)若a2=$\frac{3}{2}$,a3=x,a4=4,求x的取值范圍;
(2)設數(shù)列{an}是公比為q的等比數(shù)列,Sn為數(shù)列{an}的前n項和.若$\frac{1}{2}$Sn<Sn+1<2Sn,n∈N*,求q的取值范圍.
(3)若a1,a2,…,ak(k≥3)成等差數(shù)列,且1+a2+…+ak=120,求正整數(shù)k的最小值.以及k取最小值對相應數(shù)列a1,a2,…,ak的公差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知底面為正方形的四棱錐P-ABCD內(nèi)接于半徑為1的球,頂點P在底面ABCD上的射影是ABCD的中心,當四棱錐P-ABCD的體積最大時,四棱錐的高為(  )
A.$\frac{3}{4}$B.1C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知圓C:(x+4)2+y2=4,圓D的圓心D在y軸上且與圓C外切,圓D與y軸交于A,B兩點,定點P的坐標為(-3,0).
(1)若點D(0,3),求△APB的正切值;
(2)當點D在y軸上運動時,求tan∠APB的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過點$({1,\frac{{2\sqrt{3}}}{3}})$,離心率為$\frac{{\sqrt{3}}}{3}$,過橢圓的右焦點F作互相垂直的兩條直線分別交橢圓于A,B和C,D,且M,N分別為AB,CD的中點.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線MN過定點,并求出這個定點;
(Ⅲ)當AB,CD的斜率存在時,求△FMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.證明不等式:
(1)當x∈[-1,0]時,求證:$\frac{1+x}{1-x}$≤e2x≤$\frac{1}{(1-x)^{2}}$;
(2)已知函數(shù)f(x)=xlnx,設A(x1,f(x1)),B(x2,f(x2)),且x1≠x2,證明:$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<f′($\frac{{x}_{1}+{x}_{2}}{2}$).

查看答案和解析>>

同步練習冊答案