【題目】已知函數(shù)

1)當(dāng)時(shí),求方程的解;

2)若方程上有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),若對(duì)任意的,總存在,使成立,求實(shí)數(shù)的取值范圍.

【答案】1;(2 [8,0];(3

【解析】

1)當(dāng)時(shí),方程為,

解得

2)因?yàn)楹瘮?shù)x24xa3的對(duì)稱軸是x2

所以在區(qū)間[1,1]上是減函數(shù),

因?yàn)楹瘮?shù)在區(qū)間[1,1]上存在零點(diǎn),則必有:

,解得,

故所求實(shí)數(shù)a的取值范圍為[8,0]

3)若對(duì)任意的x1∈[1,4],總存在x2∈[1,4],使fx1)=gx2)成立,只需函數(shù)yfx)的值域?yàn)楹瘮?shù)ygx)的值域的子集.

x24x3,x∈[1,4]的值域?yàn)?/span>[1,3],下求gx)=mx52m的值域.

當(dāng)m0時(shí),gx)=52m為常數(shù),不符合題意舍去;

當(dāng)m0時(shí),gx)的值域?yàn)?/span>[5m,52m],要使[13][5m,52m],

,解得m≥6;

當(dāng)m0時(shí),gx)的值域?yàn)?/span>[52m5m],要使[1,3][52m,5m],

,解得m≤3

綜上,m的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的一段圖像如圖所示.

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(0<φ<π)

(1)當(dāng)φ時(shí),在給定的坐標(biāo)系內(nèi),用“五點(diǎn)法”做出函數(shù)f(x)在一個(gè)周期內(nèi)的圖象;

(2)若函數(shù)f(x)為偶函數(shù),求φ的值;

(3)在(2)的條件下,求函數(shù)在[﹣π,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)試作出的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間;

(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時(shí),求函數(shù)的最大值;

2)令,()其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;

3)當(dāng),方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某投資公司計(jì)劃投資,兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資金額的函數(shù)關(guān)系為,產(chǎn)品的利潤(rùn)與投資金額的函數(shù)關(guān)系為.(注:利潤(rùn)與投資金額單位:萬(wàn)元)

(1)該公司已有100萬(wàn)元資金,并全部投入,兩種產(chǎn)品中,其中萬(wàn)元資金投入產(chǎn)品,試把,兩種產(chǎn)品利潤(rùn)總和表示為的函數(shù),并寫出定義域;

(2)試問(wèn):怎樣分配這100萬(wàn)元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?

【答案】(1);(2)20,28.

【解析】

1)設(shè)投入產(chǎn)品萬(wàn)元,則投入產(chǎn)品萬(wàn)元,根據(jù)題目所給兩個(gè)產(chǎn)品利潤(rùn)的函數(shù)關(guān)系式,求得兩種產(chǎn)品利潤(rùn)總和的表達(dá)式.2)利用基本不等式求得利潤(rùn)的最大值,并利用基本不等式等號(hào)成立的條件求得資金的分配方法.

(1)其中萬(wàn)元資金投入產(chǎn)品,則剩余的(萬(wàn)元)資金投入產(chǎn)品,

利潤(rùn)總和為: ,

(2)因?yàn)?/span>,

所以由基本不等式得:,

當(dāng)且僅當(dāng)時(shí),即:時(shí)獲得最大利潤(rùn)28萬(wàn).

此時(shí)投入A產(chǎn)品20萬(wàn)元,B產(chǎn)品80萬(wàn)元.

【點(diǎn)睛】

本小題主要考查利用函數(shù)求解實(shí)際應(yīng)用問(wèn)題,考查利用基本不等式求最大值,屬于中檔題.

型】解答
結(jié)束】
20

【題目】已知曲線.

(1)求曲線在處的切線方程;

(2)若曲線在點(diǎn)處的切線與曲線相切,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在五面體中,四邊形為菱形,且,的中點(diǎn).

(1)求證:平面;

(2)若平面平面,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在測(cè)試中,客觀題難度的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題.測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:

題號(hào)

1

2

3

4

5

考前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

測(cè)試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):

學(xué)生編號(hào) 題號(hào)

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測(cè)的答對(duì)人數(shù)及相應(yīng)的實(shí)測(cè)難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);

題號(hào)

1

2

3

4

5

實(shí)測(cè)答對(duì)人數(shù)

實(shí)測(cè)難度

(Ⅱ)從編號(hào)為155人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;

Ⅲ)定義統(tǒng)計(jì)量,其中為第題的實(shí)測(cè)難度, 為第題的預(yù)估難度.規(guī)定:若,則稱該次測(cè)試的難度預(yù)估合理,否則為不合理.判斷本次測(cè)試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一新生共有320人,其中男生192人,女生128人.為了解高一新生對(duì)數(shù)學(xué)選修課程的看法,采用分層抽樣的方法從高一新生中抽取5人進(jìn)行訪談.

(Ⅰ)這5人中男生、女生各多少名?

(Ⅱ)從這5人中隨即抽取2人完成訪談問(wèn)卷,求2人中恰有1名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案