1.已知$\left\{\begin{array}{l}2x-y+2≥0\\ x+y-2≤0\\ y-1≥0\end{array}\right.$,則函數(shù)z=3x-y的最小值為$-\frac{5}{2}$.

分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}2x-y+2≥0\\ x+y-2≤0\\ y-1≥0\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{y=1}\\{2x-y+2=0}\end{array}\right.$,解得A(-$\frac{1}{2}$,1).
化目標函數(shù)z=3x-y為y=3x-z,由圖可知,當直線y=3x-z過A時,直線在y軸上的截距最大,z有最小值-$\frac{5}{2}$.
故答案為:-$\frac{5}{2}$.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$是三個不共面向量,已知向量$\overrightarrow{a}$=$\frac{1}{2}$$\overrightarrow{i}$-$\overrightarrow{j}$+$\overrightarrow{k}$,$\overrightarrow$=5$\overrightarrow{i}$-2$\overrightarrow{j}$-$\overrightarrow{k}$,則4$\overrightarrow{a}$-3$\overrightarrow$=-13$\overrightarrow{i}$+2$\overrightarrow{j}$+7$\overrightarrow{k}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)f(x)=|x+1|-|x-4|.
(1)若f(x)≤-m2+6m恒成立,求實數(shù)m的取值范圍;
(2)設(shè)m的最大值為m0,a,b,c均為正實數(shù),當3a+4b+5c=m0時,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=exlnx-1,g(x)=$\frac{x}{{e}^{x}}$.
(Ⅰ)若g(x)=a在(0,2)上有兩個不等實根,求實數(shù)a的取值范圍;
(Ⅱ)證明:f(x)+$\frac{2}{eg(x)}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\frac{{\sqrt{2}}}{2}({sin\frac{α}{2}-cos\frac{α}{2}})=\frac{{\sqrt{6}}}{3}$,則sinα的值為(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=kx,g(x)=2lnx+2e($\frac{1}{e}$≤x≤e2),若f(x)與g(x)的圖象上分別存在點M,N,使得MN關(guān)于直線y=e對稱,則實數(shù)k的取值范圍是[-$\frac{2}{e}$,2e].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$\overrightarrow{a}$=(2$\sqrt{3}$sinx,sinx+cosx),$\overrightarrow$=(cosx,sinx-cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且b2+a2-c2=ab,若f(A)-m>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,m),$\overrightarrow{c}$=(7,1),若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow$•$\overrightarrow{c}$=(  )
A.8B.10C.15D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.二分法是求方程近似解的一種方法,其原理是“一分為二,無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入x1=1,x2=2,d=0.1,則輸出n的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案