分析 (1)(an+1,Sn)都在直線2x+y-2=0上.可得2an+1+Sn-2=0,利用遞推關系可得:an+1=$\frac{1}{2}{a}_{n}$.再利用等比數列的通項公式即可得出.
(2)bn=nan2=$n•(\frac{1}{4})^{n-1}$.再利用“錯位相減法”與等比數列的求和公式即可得出.
解答 (1)解:(an+1,Sn)都在直線2x+y-2=0上.
∴2an+1+Sn-2=0,
∴n≥2時,2an+Sn-1-2=0,可得:2an+1-2an+an=0,∴an+1=$\frac{1}{2}{a}_{n}$.
∴數列{an}是等比數列,公比為$\frac{1}{2}$,首項為1.
∴an=$(\frac{1}{2})^{n-1}$.
(2)證明:bn=nan2=$n•(\frac{1}{4})^{n-1}$.
∴數列{bn}的前n項和為Tn=1+$2×\frac{1}{4}$+$3×(\frac{1}{4})^{2}$+…+$n•(\frac{1}{4})^{n-1}$,
∴$\frac{1}{4}{T}_{n}$=$\frac{1}{4}+2×(\frac{1}{4})^{2}$+…+(n-1)×$(\frac{1}{4})^{n-1}$+n$•(\frac{1}{4})^{n}$,
∴$\frac{3}{4}{T}_{n}$=$1+\frac{1}{4}$+$(\frac{1}{4})^{2}$+…+$(\frac{1}{4})^{n-1}$-n$•(\frac{1}{4})^{n}$=$\frac{1-(\frac{1}{4})^{n}}{1-\frac{1}{4}}$-n$•(\frac{1}{4})^{n}$,
∴Tn=$\frac{16}{9}$-$\frac{4+3n}{3×{4}^{n}}$<$\frac{16}{9}$.
點評 本題考查了數列遞推關系、“錯位相減法”、等比數列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | y=±$\sqrt{7}$x | B. | y=±7x | C. | y=±$\frac{\sqrt{7}}{7}$x | D. | y=±$\frac{1}{7}$x |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | e3 | C. | 4 | D. | e4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com