分析 去絕對(duì)值號(hào)即可得到$f(x)=\left\{\begin{array}{l}{{x}^{2}-4x+3}&{x≥0}\\{{x}^{2}+4x+3}&{x<0}\end{array}\right.$,根據(jù)二次函數(shù)的單調(diào)性便可分別求出x≥0和x<0時(shí)的f(x)的單調(diào)區(qū)間,最后便可得出f(x)的單調(diào)區(qū)間.
解答 解:$f(x)={x}^{2}-4|x|+3=\left\{\begin{array}{l}{{x}^{2}-4x+3}&{x≥0}\\{{x}^{2}+4x+3}&{x<0}\end{array}\right.$;
∴①x≥0時(shí),f(x)=x2-4x+3的對(duì)稱軸為x=2;
∴f(x)在[0,2]上單調(diào)遞減,在(2,+∞)上單調(diào)遞增;
②x<0時(shí),f(x)=x2+4x+3的對(duì)稱軸為x=-2;
∴f(x)在(-∞,-2)上單調(diào)遞減,在[-2,0)上單調(diào)遞增;
∴f(x)的單調(diào)減區(qū)間為(-∞,-2),[0,2],單調(diào)增區(qū)間為[-2,0),(2,+∞).
點(diǎn)評(píng) 考查函數(shù)單調(diào)區(qū)間的定義及求法,含絕對(duì)值函數(shù)的處理方法:去絕對(duì)值號(hào),分段函數(shù)單調(diào)性的判斷,以及二次函數(shù)單調(diào)區(qū)間的求法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | π | C. | $\frac{2π}{3}-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4π | B. | 5π | C. | 6π | D. | 7π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b | B. | a>b | ||
C. | a≤b | D. | a,b的大小關(guān)系無(wú)法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 棱臺(tái)的側(cè)面一定不會(huì)是平行四邊形 | |
B. | 棱錐的側(cè)面只能是三角形 | |
C. | 由四個(gè)面圍成的封閉圖形只能是三棱錐 | |
D. | 棱錐被平面截成的兩部分不可能都是棱錐 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | {4} | C. | {2,4} | D. | {2,4,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | -$\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com