12.已知An4=24Cn6,且(2x-3)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,則n=10,a1+a2+a3+…+an=0.

分析 根據(jù)An4=24Cn6,求得n=10,可得(2x-3)10═a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,令x=1,可得a0=1; 令x=2,可得 1=a0+a1+a2+a3+…+an ,從而求得 a1+a2+a3+…+an的值.

解答 解:∵An4=24Cn6,即n(n-1)(n-2)(n-3)=24•$\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{6!}$,
∴n=10.
∵(2x-3)n=(2x-3)10═a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,
令x=1,可得a0=1; 令x=2,可得 1=a0+a1+a2+a3+…+an ,∴a1+a2+a3+…+an=0,
故答案為:10;   0.

點評 本題主要考查二項式定理的應用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知銳角三角形的邊長分別2、3、x,則x的取值范圍是( 。
A.($\sqrt{5}$,$\sqrt{13}$)B.(1,5)C.(1,$\sqrt{5}$)D.($\sqrt{13}$,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.用數(shù)學歸納法證明不等式1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^n}-1}}$>$\frac{n}{2}$(n∈N*),則n=k+1與n=k相比,不等式左邊增加的項數(shù)是(  )
A.1B.k-1C.kD.2k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知$\overrightarrow a$、$\overrightarrow$是兩個不共線的非零向量,若|$\overrightarrow a$|=|$\overrightarrow b$|=1且$\overrightarrow a$與$\overrightarrow b$夾角為120°,求|$\overrightarrow a$-$\overrightarrow b$|的值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知$\overrightarrow{m}$=(1,1),$\overrightarrow{m}$•$\overrightarrow{n}$=-1,且$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{3π}{4}$,
(1)求$\overrightarrow{n}$;
(2)若$\overrightarrow{q}$=(1,0),且$\overrightarrow{n}$與$\overrightarrow{q}$的夾角為$\frac{π}{2}$,$\overrightarrow{p}$=(cosA,1+cosC),其中A、B、C為△ABC的內(nèi)角,A、B、C依次成等差數(shù)列,求|$\overrightarrow{n}$+$\overrightarrow{p}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.數(shù)列m,m,m,…,一定( 。
A.是等差數(shù)列,但不是等比數(shù)列B.是等比數(shù)列,但不是等差數(shù)列
C.是等差數(shù)列,但不一定是等比數(shù)列D.既是等差數(shù)列,又是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)y=x3-3x2的極小值是-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知△ABC的三個頂點坐標分別為A(2,4),B(0,-2),C(-2,3),
(1)求BC邊上的中線與BC邊上的高所在的直線方程
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若函數(shù)f(x)=ax2-1,a為一個正數(shù),且f[f(-1)]=-1,那么a的值是1.

查看答案和解析>>

同步練習冊答案