20.直線2x+y-1=0關(guān)于直線x=1對稱的直線方程是( 。
A.2x-y-3=0B.x-2y-3=0C.2x+y-5=0D.x+2y-5=0

分析 在直線2x+y-1=0上任取兩點,分別求出這兩點關(guān)于直線x=1的對稱點,由此能求出直線2x+y-1=0關(guān)于直線x=1對稱的直線方程.

解答 解:在直線2x+y-1=0上任取兩點(1,-1),(0,1),
這兩點關(guān)于直線x=1的對稱點分別為(1,-1),(2,1),
過這兩點的直線方程為y+1=2(x-1),即2x-y-3=0.
故選:A.

點評 本題考查與直線關(guān)于直線對稱的直線方程的求法,解題時要認真審題,注意對稱思想的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.點$({1,\frac{7π}{6}})$關(guān)于直線$θ=\frac{π}{4}({ρ∈R})$的對稱點的極坐標(biāo)為( 。
A.$({1,\frac{4π}{3}})$B.$({1,\frac{2π}{3}})$C.$({1,\frac{π}{3}})$D.$({1,-\frac{7π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)計算:$\frac{{lg\sqrt{27}+lg8-lo{g_4}8}}{{\frac{1}{2}lg0.3+lg2}}$;
(2)f(x)滿足f(x+1)+f(x-1)=x2-4x,試求f(x
)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=x•lnx,則f'(1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)在R上是奇函數(shù),且滿足f(x+5)=-f(x),當(dāng)x∈(0,5)時,f(x)=x2-x,則f(2016)=(  )
A.-12B.-16C.-20D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線方程為y2=x,求出拋物線上點M到直線x-2y+4=0的最小距離及點M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d,a20,an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合M={0,1,2,4,8},N={x|x=2n,n∈N+},則M∩N等于( 。
A.{0,2,4}B.{1,2,4,8}C.{2,4,8}D.{0,2,4,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若 y=lg(mx2+2mx+1)對任意x∈R恒有意義,則實數(shù)m的范圍為[0,1).

查看答案和解析>>

同步練習(xí)冊答案