7.在平行四邊形ABCD中,$\overrightarrow{AB}$=(1,2),$\overrightarrow{AC}$=(-4,2),則該平行四邊形的面積為10.

分析 根據(jù)向量的垂直的條件得到,$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,求出S△ABC,由于S平行四邊形ABCD=2△ABC,即可求出結果.

解答 解:∵$\overrightarrow{AB}$=(1,2),$\overrightarrow{AC}$=(-4,2),
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=1×(-4)+2×2=0,
∴$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,
∵|$\overrightarrow{AB}$|=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,|$\overrightarrow{AC}$|=$\sqrt{(-4)^{2}+{2}^{2}}$=2$\sqrt{5}$,
∴S平行四邊形ABCD=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|=$\sqrt{5}$×2$\sqrt{5}$=10.
故答案為:10

點評 本題考查向量在幾何中的應用,向量的數(shù)量積以及三角形的面積的求法,考查轉化思想與計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知等比數(shù)列{an}單調(diào)遞減,滿足a1a5=9,a2+a4=10,則數(shù)列{an}的公比q=( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知z是純虛數(shù),i為虛數(shù)單位,$\frac{z+2}{1-i}$在復平面內(nèi)所對應的點在實軸上,那么z等于(  )
A.2iB.iC.-iD.-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知點P是直線l:y=x+2與橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的一個公共點,F(xiàn)1,F(xiàn)2分別為該橢圓的左右焦點,設|PF1|+|PF2|取得最小值時橢圓為C.
(Ⅰ)求橢圓C的標準方程及離心率;
(Ⅱ)已知A,B為橢圓C上關于y軸對稱的兩點,Q是橢圓C上異于A,B的任意一點,直線QA,QB分別與y軸交于點M(0,m),N(0,n),試判斷mn是否為定值;如果為定值,求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ex-ax2-bx-1,其中e為自然對數(shù)的底數(shù),a,b為實常數(shù).
(1)若曲線y=f(x)在點(1,f(1))處的切線方程為y=(e-1)x-1,求函數(shù)f(x)的值域;
(2)若f(1)=0,且存在x1,x2∈(0,1),使得f(x1)f(x2)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若復數(shù)z滿足|z+3|=|z-4i|(i為虛數(shù)單位),則|z|的最小值為$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,AB是△ABC外接圓O的直徑,四邊形DCBE為矩形,且DC⊥平面ABC,AB=4,BE=1.
(1)證明:直線BC⊥平面ACD;
(2)當三棱錐E-ABC的體積最大時,求異面直線CO與DE所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個頂點作一條漸近線的垂線,垂足為P,記以雙曲線的實軸為長軸且過點P的橢圓的離心率為e1,雙曲線的離心率為e2,則$\frac{1}{{e}_{1}^{2}}$-$\frac{1}{{e}_{2}^{2}}$=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,若輸出的值為-5,則判斷框中可以填入的條件為( 。
A.z>10?B.z≤10?C.z>20?D.z≤20?

查看答案和解析>>

同步練習冊答案