【題目】設(shè)a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用區(qū)間表示);
(2)求函數(shù)f(x)=x2﹣(1+a)x+a在D內(nèi)的零點(diǎn).

【答案】
(1)解:對于方程2x2﹣3(1+a)x+6a=0

判別式△=3(a﹣3)(3a﹣1)

因?yàn)閍<1,所以a﹣3<0

①當(dāng)1 時,△<0,此時B=R,所以D=A;

②當(dāng)a= 時,△=0,此時B={x|x≠1},所以D=(0,1)∪(1,+∞);

當(dāng)a< 時,△>0,設(shè)方程2x2﹣3(1+a)x+6a=0的兩根為x1,x2,且x1<x2,則

③當(dāng)0 時,x1+x2= (1+a)>0,x1x2=3a>0,所以x1>0,x2>0

此時,D=(0,x1)∪(x2,+∞);

④當(dāng)a≤0時,x1x2=3a≤0,所以x1≤0,x2>0.

此時,D=(x2,+∞).


(2)解:f(x)=(x﹣1)(x﹣a),a<1,

①當(dāng)1 時,函數(shù)f(x)的零點(diǎn)為1與a;

②當(dāng)a= 時,函數(shù)f(x)的零點(diǎn)為

③當(dāng)0 時,因?yàn)?×12﹣3(1+a)+6a<0,2×a2﹣3(1+a)a+6a>0,所以函數(shù)f(x)零點(diǎn)為a;

④a≤0,因?yàn)?×12﹣3(1+a)+6a<0,2×a2﹣3(1+a)a+6a<0,所以函數(shù)f(x)無零點(diǎn)


【解析】(1)對于方程2x2﹣3(1+a)x+6a=0,判別式△=3(a﹣3)(3a﹣1)因?yàn)閍<1,所以a﹣3<0,分類討論求出B,即可求集合D(用區(qū)間表示);(2)f(x)=(x﹣1)(x﹣a),a<1,分類討論求函數(shù)f(x)=x2﹣(1+a)x+a在D內(nèi)的零點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點(diǎn)C(t, )(t∈R,t≠0)為圓心的圓過原點(diǎn)O.
(1)設(shè)直線3x+y﹣4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程;
(2)在(1)的條件下,設(shè)B(0,2),且P,Q分別是直線l:x+y+2=0和圓C上的動點(diǎn),求|PQ|﹣|PB|的最大值及此時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若三個內(nèi)角A,B,C成等差數(shù)列,且a= ,b= ,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=10,an+1﹣an=n(n∈N*),則 取最小值時n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時,函數(shù)解析式f(x)= (a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)﹣b(ω>0,0<φ<π)的圖象兩對稱軸之間的距離是 ,若將f(x)的圖象先向由平移 個單位,再向上平移 個單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)遞減區(qū)間和對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一河南旅游團(tuán)到安徽旅游.看到安徽有很多特色食品,其中水果類較有名氣的有:懷遠(yuǎn)石榴、碭山梨、徽州青棗等19種,點(diǎn)心類較有名氣的有:一品玉帶糕、徽墨酥、八公山大救駕等38種,小吃類較有名氣的有:符離集燒雞、無為熏鴨、合肥龍蝦等57種.該旅游團(tuán)的游客決定按分層抽樣的方法從這些特產(chǎn)中買6種帶給親朋品嘗.
(1)求應(yīng)從水果類、點(diǎn)心類、小吃類中分別買回的種數(shù);
(2)若某游客從買回的6種特產(chǎn)中隨機(jī)抽取2種送給自己的父母,
①列出所有可能的抽取結(jié)果;
②求抽取的2種特產(chǎn)均為小吃的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的函數(shù).

(1)當(dāng)時,求函數(shù)在點(diǎn)處的切線方程;

(2)設(shè),討論函數(shù)的單調(diào)區(qū)間;

(3)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)為Sn , 點(diǎn)(n, ),(n∈N*)均在函數(shù)y=3x﹣2的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)bn= ,Tn為數(shù)列{bn}的前n項(xiàng)和,求使得Tn 對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

同步練習(xí)冊答案