1.據(jù)報(bào)載,中美洲地區(qū)毀林嚴(yán)重.據(jù)統(tǒng)計(jì),在20世紀(jì)80年代末,每時(shí)平均毀林約48hm2,森林面積每年以3.6%~3.9%的速度減少,迄今被毀面積已達(dá)1.3×107hm2,目前還剩1.9×107hm2.請(qǐng)你回答以下幾個(gè)問(wèn)題:
(1)如果以每時(shí)平均毀林約48hm2計(jì)算,剩下的森林經(jīng)過(guò)多少年將被毀盡?
(1)根據(jù)(1)計(jì)算出的年數(shù)n,如果以每年3.6%~3.9%的速度減少,計(jì)算n年后的毀林情況;
(3)若按3.6%的速度減少,估算經(jīng)過(guò)150年后,經(jīng)過(guò)200年后,經(jīng)過(guò)250年后及經(jīng)過(guò)300年后森林面積的情況,經(jīng)過(guò)多少年森林將被毀盡?

分析 (1)用剩余森林面積數(shù)除以每年的毀林面積數(shù)計(jì)算得出;
(2)分別按3.6%和3.9%計(jì)算森林剩余面積;
(3)使用等比數(shù)列的通項(xiàng)公式計(jì)算各年后的深林面積剩余情況.

解答 解:(1)如果以每時(shí)平均毀林約48hm2計(jì)算,則每年平均毀林48×24×365=420480hm2,
$\frac{1.9×1{0}^{7}}{420480}$≈45.2.
故剩余森林面積大約經(jīng)過(guò)45年將被毀盡.
(2)若以3.6%的速度減少,則45年后的森林面積為1.9×107×(1-3.6%)45≈3.65×106hm2,
若以3.9%的速度減少,則45年后的森林面積為1.97×107×(1-3.9%)45≈3.17×106hm2
(3)經(jīng)過(guò)150年后,森林面積為1.9×107×(1-3.6%)150≈7.77×104hm2
經(jīng)過(guò)200年后,森林面積為1.9×107×(1-3.6%)200≈1.24×104hm2,
經(jīng)過(guò)250年后,森林面積為1.9×107×(1-3.6%)250≈1986hm2,
經(jīng)過(guò)300年后,森林面積為1.9×107×(1-3.6%)300≈317hm2,
經(jīng)過(guò)512年后,森林面積為1.9×107×(1-3.6%)512≈0.134hm2,森林幾乎毀盡.

點(diǎn)評(píng) 本題考查了等比數(shù)列的應(yīng)用,考查學(xué)生計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知點(diǎn)A(-2,0),圓C:x2-4x+y2-4y+4=0,過(guò)點(diǎn)A的直線l與圓C相交于兩個(gè)不同的點(diǎn)P,Q,線段PQ的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(1)求點(diǎn)M的軌跡方程;
(2)求|OM|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知△ABC是邊長(zhǎng)為1的等邊三角形,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),連接DE并延長(zhǎng)到點(diǎn)F,使得DE=2EF,則$\overrightarrow{AF}$•$\overrightarrow{BC}$的值為(  )
A.-$\frac{5}{8}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{11}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)函數(shù)f(x)=sin2x+bsinx+c,則f(x)的最小正周期(  )
A.與b有關(guān),且與c有關(guān)B.與b有關(guān),但與c無(wú)關(guān)
C.與b無(wú)關(guān),且與c無(wú)關(guān)D.與b無(wú)關(guān),但與c有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知f(x)=sin[$\frac{π}{3}$(x+1)]-$\sqrt{3}$cos[$\frac{π}{3}$(x+1)],則f(1)+f(2)+f(3)+f(4)+…+f(2015)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知A,B,C三點(diǎn)的坐標(biāo)分別為A(2,0),B(0,2),C(cosα,sinα),其中α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)若$|{\overrightarrow{AC}}|=|{\overrightarrow{BC}}|$,求角α的值;
(2)若$\overrightarrow{AC}\;•\;\overrightarrow{BC}=-1$,求sin(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知0<α<$\frac{π}{2}$<β<π,sinα=$\frac{4}{5}$,cos(α-β)=$\frac{\sqrt{2}}{10}$,則β的值為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列四個(gè)函數(shù)中(1)f(x)=tan($\frac{x}{2}$-$\frac{π}{3}$);(2)f(x)=|sinx|;(3)f(x)=sinx•cosx;(4)f(x)=cosx+sinx最小正周期為π的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)f(x)=$\frac{x+2}{2x+1}$的反函數(shù)為y=f-1(x),則f-1(2)=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案