5.已知函數(shù)f(x)=[x3+(a-1)x2-ax+a]ex,若x=0是f(x)的一個(gè)極大值點(diǎn),則實(shí)數(shù)a的取值范圍為(2,+∞).

分析 求導(dǎo)數(shù)得到f′(x)=-x[x2+(2+a)x+a-2]ex,容易判斷方程x2+(2+a)x+a-2=0有兩個(gè)不同實(shí)數(shù)根,并設(shè)g(x)=x2+(2+a)x+a-2,根據(jù)題意便可得到g(0)>0,從而便可得出實(shí)數(shù)a的取值范圍.

解答 解:解:f′(x)=-x[x2+(2+a)x+a-2]ex;
令x2+(2+a)x+a-2=0,則△=a2+12>0;
設(shè)g(x)=x2+(2+a)x+a-2,∵x=0是f(x)的一個(gè)極大值點(diǎn);
∴g(0)>0;
即a-2>0;
∴a>2;
∴實(shí)數(shù)a的取值范圍為(2,+∞).
故答案為:(2,+∞).

點(diǎn)評(píng) 考查函數(shù)極大值點(diǎn)的定義,以及根據(jù)導(dǎo)數(shù)符號(hào)判斷函數(shù)極大值點(diǎn)的方法和過程,一元二次方程的根的情況和判別式△取值的關(guān)系,要熟悉二次函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.觀察下面的數(shù)表

該表中第6行最后一個(gè)數(shù)是126;設(shè)2016是該表的m行第n個(gè)數(shù),則m+n=507.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過拋物線C:y2=4x的焦點(diǎn)F的直線l交C于A,B兩點(diǎn),點(diǎn)M(-1,2),若$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,則直線l的斜率k=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知點(diǎn)F1是拋物線C:x2=4y的焦點(diǎn),點(diǎn)F2為拋物線C的對(duì)稱軸與其準(zhǔn)線的交點(diǎn),過F2作拋物線C的切線,切點(diǎn)為A,若點(diǎn)A恰好在以F1,F(xiàn)2為焦點(diǎn)的雙曲線上,則雙曲線的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知點(diǎn)C(x0,y0)是拋物線y2=4x上的動(dòng)點(diǎn),以C為圓心的圓過該拋物線的焦點(diǎn)F,且圓C與直線x=-$\frac{1}{2}$相交于A,B兩點(diǎn).
(Ⅰ)當(dāng)|FC|=3時(shí),求|AB|;
(Ⅱ)求|FA|•|FB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知有窮數(shù)列{an}各項(xiàng)均不相等,將{an}的項(xiàng)從大到小重新排序后相應(yīng)的項(xiàng)數(shù)構(gòu)成新數(shù)列{Pn},稱{Pn}為{an}的“序數(shù)列”,例如數(shù)列:a1,a2,a3滿足a1>a3>a2,則其序數(shù)列{Pn}為1,3,2.
(1)求證:有窮數(shù)列{an}的序數(shù)列{Pn}為等差數(shù)列的充要條件是有窮數(shù)列{an}為單調(diào)數(shù)列;
(2)若項(xiàng)數(shù)不少于5項(xiàng)的有窮數(shù)列{bn},{cn}的通項(xiàng)公式分別是bn=n•($\frac{3}{5}$)n(n∈N*),cn=-n2+tn(n∈N*),且{bn}的序數(shù)列與{cn}的序數(shù)列相同,求實(shí)數(shù)t的取值范圍;
(3)若有窮數(shù)列{dn}滿足d1=1,|dn+1-dn|=($\frac{1}{2}$)n(n∈N*),且{d2n-1}的序數(shù)列單調(diào)減,{d2n}的序數(shù)列單調(diào)遞增,求數(shù)列{dn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.計(jì)算下式的值$|\begin{array}{l}{1}&{3}\\{2}&{4}\end{array}|$+$|\begin{array}{l}{-1}&{0}\\{2}&{4}\end{array}|$=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知奇函數(shù)f(x)在[-1,0]上為增函數(shù),又α、β為銳角三角形兩內(nèi)角,則下列結(jié)論正確的是( 。
A.f(cos α)>f(cos β)B.f(sin α)>f(sin β)C.f(sin α)>f(cos β)D.f(sin α)<f(cos β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.把二進(jìn)制111011(2)化為十進(jìn)制數(shù),則此數(shù)為( 。
A.57B.58C.59D.60

查看答案和解析>>

同步練習(xí)冊(cè)答案