(本題滿分12分)
在立體圖形P-ABCD中,底面ABCD是一個直角梯形,∠BAD=90°,AD∥BC,
AB=BC=a,AD=PA=2a,E是邊的中點,且PA⊥底面ABCD。
(1)求證:BE⊥PD
(2)求證:
(3)求異面直線AE與CD所成的角.
(1)略
(2)略
(3)異面直線AE與CD所成的角為
證明:(1)PA⊥底面ABCD  
∠BAD=90° 
平面
是斜線在平面內(nèi)的射影
 AE⊥PD      BE⊥PD
(2)連結(jié)
PA⊥底面ABCD  是斜線在平面內(nèi)的射影
     
(3)過點作,連結(jié),則(或其補角)為異面直線AE與CD所成的角。由(2)知     平面
    平面     
  
        
          異面直線AE與CD所成的角為
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖,四邊形ABCD為矩形,BC⊥平面ABEFCE上的點,
BF⊥平面ACE.
(1)求證:AEBE
(2)設(shè)點M為線段AB的中點,點N為線段CE的中點.
求證:MN∥平面DAE

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分).如圖所示,四棱錐PABCD的底面積ABCD是邊長為1的菱形,
BCD=60°,ECD的中點,PA⊥底面積ABCD,PA.
(Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ) 過PC中點F作FH//平面PBD, FH交平面ABCD 于H點,判定H點位于平面ABCD的那個具體位置?(無須證明)
(Ⅲ)求二面角ABEP的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,正三棱柱所有棱長都是,是棱的中點,是棱的中點,于點
(1)求證:
(2)求二面角的大。ㄓ梅慈呛瘮(shù)表示);
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,EPC的中點.
(1)證明 平面
(2)求EB與底面ABCD所成的角的正切值.


 
 

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐中,底面是平行四邊形,,且,,又底面,又為邊上異于的點,且.
(1)求四棱錐的體積;
(2)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)如圖,在直三棱柱ABC—中, AB = 1,;點D、E分別在上,且,四棱錐與直三棱柱的體積之比為3:5。

(1)求異面直線DE與的距離;(8分)
(2)若BC =,求二面角的平面角的正切值。(5分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

棱長為3的正三棱柱內(nèi)接于球O中,則球O的表面積為
A.36B.21C.9D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AB=1,,
(1)證明:AB⊥A1C
(2)求二面角A-A1C-B的大小

查看答案和解析>>

同步練習冊答案