【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求的普通方程和C的直角坐標(biāo)方程;

2)直線上的點(diǎn)為曲線內(nèi)的點(diǎn),且直線與曲線交于,且,求的值.

【答案】1,2m

【解析】

1)把曲線的極坐標(biāo)方程變形,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線的直角坐標(biāo)方程,直接把直線參數(shù)方程中的參數(shù)消去,可得直線的普通方程.

2)化直線的參數(shù)方程為標(biāo)準(zhǔn)形式,代入曲線的直角坐標(biāo)方程,得到關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系結(jié)合參數(shù)的幾何意義求解.

1)∵曲線的極坐標(biāo)方程為,∴,

,得.

∴曲線的直角坐標(biāo)方程為.

直線的參數(shù)方程為為參數(shù)),消去參數(shù),

可得直線的普通方程為;

2)設(shè)直線的標(biāo)準(zhǔn)參數(shù)方程為,代入橢圓方程,

.

設(shè)對應(yīng)的參數(shù)分別為,則.

又點(diǎn)為曲線內(nèi)的點(diǎn),∴,即.

,解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),關(guān)于函數(shù)有下列結(jié)論:

,;

②函數(shù)的圖象是中心對稱圖形,且對稱中心是;

③若的極大值點(diǎn),則在區(qū)間單調(diào)遞減;

④若的極小值點(diǎn),且,則有且僅有一個零點(diǎn).

其中正確的結(jié)論有________(填寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,

1)討論函數(shù)的單調(diào)性;

2)若(其中),證明:;

3)是否存在實(shí)數(shù)a,使得在區(qū)間內(nèi)恒成立,且關(guān)于x的方程內(nèi)有唯一解?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知函數(shù)的反函數(shù).定義:若對給定的實(shí)數(shù),函數(shù)互為反函數(shù),則稱滿足和性質(zhì);若函數(shù)互為反函數(shù),則稱滿足積性質(zhì)”.

1) 判斷函數(shù)是否滿足“1和性質(zhì),并說明理由;

2) 求所有滿足“2和性質(zhì)的一次函數(shù);

3) 設(shè)函數(shù)對任何,滿足積性質(zhì)”.的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四面體PABC中,PAPBPCABAC2,BC2,動點(diǎn)QABC的內(nèi)部(含邊界),設(shè)∠PAQα,二面角PBCA的平面角的大小為βAPQBCQ的面積分別為S1S2,且滿足,則S2的最大值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是從2020214日至2020419日共66天的新冠肺炎中國/海外新增確診趨勢圖,根據(jù)該圖,下列結(jié)論中錯誤的是(

A.2020214日起中國已經(jīng)基本控制住國內(nèi)的新冠肺炎疫情

B.2020313日至202043日海外新冠肺炎疫情快速惡化

C.66天海外每天新增新冠肺炎確診病例數(shù)的中位數(shù)在區(qū)間內(nèi)

D.海外新增新冠肺炎確診病例數(shù)最多的一天突破10萬例

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的普通方程;

2)以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,(),直線與曲線交于,兩點(diǎn),求線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點(diǎn).

(1)設(shè)P是上的一點(diǎn),且AP⊥BE,求∠CBP的大;

(2)當(dāng)AB=3,AD=2時,求二面角E-AG-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩高射炮同時向一架敵機(jī)射擊,已知甲擊中敵機(jī)的概率是0.6,乙擊中敵機(jī)的概率為0.5,求敵機(jī)被擊中的概率.

查看答案和解析>>

同步練習(xí)冊答案