【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)).
(1)求曲線(xiàn)的普通方程;
(2)以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為,(),直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),求線(xiàn)段的長(zhǎng)度.
【答案】(1)(或);(2).
【解析】
(1)根據(jù)參數(shù)方程,消去參數(shù),得到曲線(xiàn)普通方程,再由題意求出定義域即可;
(2)先將(1)中的曲線(xiàn)方程化為極坐標(biāo)方程,得到,(),設(shè),的極坐標(biāo)分別為,,將代入曲線(xiàn)的極坐標(biāo)方程,由根與系數(shù)關(guān)系,以及,即可得出結(jié)果.
(1)曲線(xiàn)的參數(shù)方程為(為參數(shù)),
將①式兩邊平方,得③,
③②,得,即,
因?yàn)?/span>,當(dāng)且僅當(dāng),
即時(shí)取“”,
所以,即或,
所以曲線(xiàn)的普通方程為(或).
(2)因?yàn)榍(xiàn)的直角坐標(biāo)系方程為(或),
所以把代入得:,(),
則曲線(xiàn)的極坐標(biāo)方程為,()
設(shè),的極坐標(biāo)分別為,,由
得,即,且
因?yàn)?/span>或,
滿(mǎn)足,不妨設(shè)
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為
(1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;
(2)已知點(diǎn),點(diǎn)為曲線(xiàn)上的動(dòng)點(diǎn),求線(xiàn)段的中點(diǎn)到直線(xiàn)的距離的最大值.并求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】阿波羅尼斯(古希臘數(shù)學(xué)家,約公元前262-190年)的著作《圓錐曲線(xiàn)論》是古代世界光輝的科學(xué)成果,它將圓錐曲線(xiàn)的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒(méi)有插足的余地.他證明過(guò)這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱(chēng)為阿波羅尼斯圓.①若定點(diǎn)為,寫(xiě)出的一個(gè)阿波羅尼斯圓的標(biāo)準(zhǔn)方程__________;②△中,,則當(dāng)△面積的最大值為時(shí),______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求的普通方程和C的直角坐標(biāo)方程;
(2)直線(xiàn)上的點(diǎn)為曲線(xiàn)內(nèi)的點(diǎn),且直線(xiàn)與曲線(xiàn)交于,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直四棱柱中,底面是邊長(zhǎng)為6的正方形,點(diǎn)在線(xiàn)段上,且滿(mǎn)足,過(guò)點(diǎn)作直四棱柱外接球的截面,所得的截面面積的最大值與最小值之差為,則直四棱柱外接球的半徑為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠的一臺(tái)某型號(hào)機(jī)器有2種工作狀態(tài):正常狀態(tài)和故障狀態(tài).若機(jī)器處于故障狀態(tài),則停機(jī)檢修.為了檢查機(jī)器工作狀態(tài)是否正常,工廠隨機(jī)統(tǒng)計(jì)了該機(jī)器以往正常工作狀態(tài)下生產(chǎn)的1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值,得出如圖1所示頻率分布直方圖.由統(tǒng)計(jì)結(jié)果可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為這1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值的平均數(shù),近似為這1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值的方差(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值為代表).若產(chǎn)品的質(zhì)量指標(biāo)值全部在之內(nèi),就認(rèn)為機(jī)器處于正常狀態(tài),否則,認(rèn)為機(jī)器處于故障狀態(tài).
(1)下面是檢驗(yàn)員在一天內(nèi)從該機(jī)器生產(chǎn)的產(chǎn)品中隨機(jī)抽取10件測(cè)得的質(zhì)量指標(biāo)值:
29 45 55 63 67 73 78 87 93 113
請(qǐng)判斷該機(jī)器是否出現(xiàn)故障?
(2)若機(jī)器出現(xiàn)故障,有2種檢修方案可供選擇:
方案一:加急檢修,檢修公司會(huì)在當(dāng)天排除故障,費(fèi)用為700元;
方案二:常規(guī)檢修,檢修公司會(huì)在七天內(nèi)的任意一天來(lái)排除故障,費(fèi)用為200元.
現(xiàn)需決策在機(jī)器出現(xiàn)故障時(shí),該工廠選擇何種方案進(jìn)行檢修,為此搜集檢修公司對(duì)該型號(hào)機(jī)器近100單常規(guī)檢修在第i(,2,…,7)天檢修的單數(shù),得到如圖2所示柱狀圖,將第i天常規(guī)檢修單數(shù)的頻率代替概率.已知該機(jī)器正常工作一天可收益200元,故障機(jī)器檢修當(dāng)天不工作,若機(jī)器出現(xiàn)故障,該選擇哪種檢修方案?
附:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)()上的兩個(gè)動(dòng)點(diǎn)和,焦點(diǎn)為F.線(xiàn)段AB的中點(diǎn)為,且A,B兩點(diǎn)到拋物線(xiàn)的焦點(diǎn)F的距離之和為8.
(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(2)若線(xiàn)段AB的垂直平分線(xiàn)與x軸交于點(diǎn)C,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為等邊三角形,,P,Q依次為AC,AB上的點(diǎn),且線(xiàn)段PQ將分為面積相等的兩部分,設(shè),,.
(1)用解析式將t表示成x的函數(shù);
(2)用解析式將y表示成x的函數(shù);
(3)求y的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】著名數(shù)學(xué)家華羅庚先生曾說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休.”在數(shù)學(xué)的學(xué)習(xí)和研究中,我們經(jīng)常用函數(shù)的圖象來(lái)研究函數(shù)的性質(zhì),也經(jīng)常用函數(shù)的解析式來(lái)琢磨函數(shù)的圖象的特征,如某體育品牌的LOGO為,可抽象為如圖所示的軸對(duì)稱(chēng)的優(yōu)美曲線(xiàn),下列函數(shù)中,其圖象大致可“完美”局部表達(dá)這條曲線(xiàn)的函數(shù)是( )
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com