已知矩陣M=
1
2
0
02
,試求:
(Ⅰ)矩陣M的逆矩陣M-1;
(Ⅱ)直線y=2x在矩陣M-1對應(yīng)的變換作用下的曲線方程.
考點:幾種特殊的矩陣變換
專題:矩陣和變換
分析:(Ⅰ)根據(jù)定義直接計算;
(Ⅱ)由(Ⅰ)直接計算即可.
解答: 解:(Ⅰ)∵矩陣M=
1
2
0
02
,
∴矩陣M的逆矩陣M-1=
20
0
1
2
;
(Ⅱ)設(shè)點P(x,y)是曲線y=2x上任意一點,在矩陣M-1對應(yīng)的變換作用下得到的點為Q(x',y'),
x
y
=
20
0
1
2
x
y
=
2x
1
2
y
,
所以
x=2x
y=
1
2
y
,即
x=
1
2
x
y=2y

且點P在直線y=2x上,于是得2y=2×
1
2
x
,2y′=x′,
即直線y=2x在矩陣M-1對應(yīng)的變換作用下的曲線方程為y=
1
2
x
點評:本題考查求矩陣的逆矩陣、矩陣與變換等基礎(chǔ)知識與運算求解能力,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡
(1)sin(-1071°)•sin99°+sin(-171°)•sin(-261°);
(2)1+sin(α-2π)•sin(π+α)-2cos2(-α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,點A位橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點,點B、C在橢圓上,若四邊形OABC為平行四邊形,且∠OAB=45°,則橢圓E的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間四邊形OABC,棱OA,OB,OC相互垂直,且OA=OB=BC=1,N是OC的中點,點M在AB上,且MN⊥AB,求MN與AB的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方向向量為
v
=(1,
3
)的直線l過點(0,-2
3
)和橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點,且橢圓的離心率為
1
2

(1)求橢圓C的方程;
(2)若過點P(-8,0)的直線與橢圓相交于不同兩點A、B,F(xiàn)為橢圓C的左焦點,求三角形ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=4,P為線段B1D1上一點.
(Ⅰ)求證:AC⊥BP;
(Ⅱ)當(dāng)P為線段B1D1的中點時,求三棱錐A-PBC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程cosx+sin2x+m-1=0(m∈R)恒有實數(shù)解,記m的所有可能取構(gòu)成集合M,若λ為區(qū)間[-1,4]上的隨機數(shù),則λ∈M的概率為( 。
A、
1
5
B、
2
5
C、
1
20
D、
9
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中有大小互不相同的4個紅球和6個白球,從中取出4個球.
(1)若取出的球必須有兩種顏色,則有多少種不同的取法?
(2)若取出的紅球個數(shù)不少于白球個數(shù),則有多少種不同的取法?
(3)取出1個紅球記1分,取出1個白球記2分,若取出4球的總分不低于5分,則有多少種不同的取法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|1≤x≤2},B={x|x≤a},若A⊆B,則a的取值范圍
 

查看答案和解析>>

同步練習(xí)冊答案