如圖,在四棱錐中,平面,底面是菱形,,

(Ⅰ)求證:
(Ⅱ)若,求二面角的余弦值.

(Ⅰ)先證,,進而證明⊥平面,從而得證;
(Ⅱ)

解析試題分析:(Ⅰ)證明:因為四邊形是菱形,所以.
又因為平面,所以.
,所以⊥平面.                     
平面,所以                                       ……6分
(Ⅱ)依題意,知

平面平面,交線為,
過點,垂足為,則平面.
在平面內(nèi)過,垂足為,連,
⊥平面,所以為二面角的一個平面角 .       ……9分
,,
.                                        ……10分
,故. 所以.                            ……11分
.
即二面角的余弦值為.                                      ……12分
考點:本小題主要考查空間中線線垂直的證明和二面角的求解.
點評:在空間中證明直線、平面間的位置關系時,要緊扣判定定理和性質(zhì)定理,定理中要求的條件要一一列舉出來,缺一不可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,
,
(1)求證:;
(2)求直線與平面所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面是直角梯形,AB⊥AD,點E在線段AD上,且CE∥AB。

求證:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面,,


(1)若E是PC的中點,證明:平面
(2)試在線段PC上確定一點E,使二面角P- AB- E的大小為,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

選修4-1:幾何證明選講
如圖,在等腰梯形ABCD中,對角線AC⊥BD,且相交于點O ,E是AB邊的中點,EO的延長線交CD于F.

(1)求證:EF⊥CD;
(2)若∠ABD=30°,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐的底面是等腰梯形,
分別是的中點.

(1)求證:; 
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(滿分13分)
如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形.

(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共12分)
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,QAD的中點,M是棱PC上的點,PA=PD=2,BC=AD=1,CD=

(1)求證:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C為30°,設PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,底面是邊長為2的正方形,,且,中點.

(1)求證:平面;
(2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案