已知四棱錐的底面是等腰梯形,
分別是的中點.

(1)求證:; 
(2)求二面角的余弦值.

(1)利用線面垂直證明線線垂直;(2)

解析試題分析:(1)分別是的中點.
的中位線,           2分
由已知可知-        3分
         -4分

           -5  分
                 -6分
(2)以所在直線為x軸,y軸,z軸,建系
由題設,,          7分

           8分
設平面的法向量為
可得,         --10分
平面的法向量為 
設二面角
                  --12分
考點:本題考查了空間中的線面關系
點評:高考中?疾榭臻g中平行關系與垂直關系的證明以及幾何體體積的計算,這是高考的重點內(nèi)容.證明的關鍵是熟練掌握并靈活運用相關的判定定理與性質(zhì)定理

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,中,側棱與底面垂直,,,點分別為的中點.

(1)證明:;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方體ABCD—A1B1C1D1棱長為8,E、F分別為AD1,CD1中點,G、H分別為棱DA,DC上動點,且EH⊥FG.

(1)求GH長的取值范圍;
(2)當GH取得最小值時,求證:EH與FG共面;并求出此時EH與FG的交點P到直線的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知四棱錐的底面為等腰梯形,,,垂足為是四棱錐的高。

(Ⅰ)證明:平面 平面;
(Ⅱ)若,60°,求四棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,平面,底面是菱形,

(Ⅰ)求證:;
(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
如圖,四棱錐P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點。

(1)求證:CD⊥AE;
(2)求證:PD⊥面ABE。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
已知:如圖,中,,,是角平分線。求證:。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.

(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,等腰△ABC的底邊AB=6,高CD=3,點E是線段BD上異于點B、D的動點.點F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.記,用表示四棱錐P-ACFE的體積.

(Ⅰ)求 的表達式;
(Ⅱ)當x為何值時,取得最大值?
(Ⅲ)當V(x)取得最大值時,求異面直線AC與PF所成角的余弦值

查看答案和解析>>

同步練習冊答案