14.已知正項(xiàng)等比數(shù)列{an}{n∈N*},首項(xiàng)a1=3,前n項(xiàng)和為Sn,且S3+a3、S5+a5、S4+a4成等差數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{nan}的前n項(xiàng)和為Tn,若對(duì)任意正整數(shù)n,都有Tn∈[a,b],求b-a的最小值.

分析 (Ⅰ)利用等差數(shù)列和等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和的意義即可得出;
(Ⅱ)利用等差數(shù)列和等比數(shù)列的前n項(xiàng)和公式、“錯(cuò)位相減法”即可得出,再根據(jù)數(shù)列的函數(shù)特征,即可求出b-a的最小值.

解答 解:(1)設(shè)正項(xiàng)等比數(shù)列{an}(n∈N*),又a1=3,∴an=3qn-1,
∵S3+a3、S5+a5、S4+a4成等差數(shù)列,
∴2(S5+a5)=(S3+a3)+(S4+a4),
即2(a1+a2+a3+a4+2a5)=(a1+a2+2a3)+(a1+a2+a3+2a4),
化簡得4a5=a3,
∴4a1q4=a1q1,化為4q2=1,
解得q=$±\frac{1}{2}$,
∵an>0,
∴q=$\frac{1}{2}$,
∴an=3×($\frac{1}{2}$)n-1,
(Ⅱ)由(Ⅰ)知,nan=3n×($\frac{1}{2}$)n-1,
∴Tn=3×1+3×2×($\frac{1}{2}$)+3×3×($\frac{1}{2}$)2+…+3n×($\frac{1}{2}$)n-1,
∴$\frac{1}{2}$Tn=3×$\frac{1}{2}$+3×2×($\frac{1}{2}$)2+3×3×($\frac{1}{2}$)3+…+3(n-1)×($\frac{1}{2}$)n-1+3n×($\frac{1}{2}$)n
兩式相減得到$\frac{1}{2}$Tn=3×1+3×$\frac{1}{2}$+3×($\frac{1}{2}$)2+3×($\frac{1}{2}$)3+…+3×($\frac{1}{2}$)n-1-3n×($\frac{1}{2}$)n=3×$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$-3n×($\frac{1}{2}$)n=6-(6+3n)×($\frac{1}{2}$)n
∴Tn=12-(6+3n)×($\frac{1}{2}$)n-1
又nan=3n×($\frac{1}{2}$)n-1>0,
∴{Tn}單調(diào)遞增,
∴{Tn}min=T1=3,
∴3≤Tn<12,
∵對(duì)任意正整數(shù)n,都有Tn∈[a,b],
∴a≤3,b≥12,
∴a的最大值為3,b的最大值為12,
故b-a的最小值=12-3=9

點(diǎn)評(píng) 本題考查了遞推式的應(yīng)用、等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式及其性質(zhì)、“錯(cuò)位相減法求和”、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=-x3+x2-ax+1是R上的單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍為(  )
A.[-3,+∞)B.(-∞,-$\frac{1}{3}$]C.[$\frac{1}{3}$,+∞)D.(-∞,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x+$\frac{{a}^{2}}{2}$.
(1)若f′(2)=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若f(x)有一個(gè)零點(diǎn),求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中正確的個(gè)數(shù)是命題(  )
①命題“若cosx=cosy,則x=y”的逆否命題是真命題;
②命題“任意x∈(0,+∞),2x>1”的否定是“任意x∉(0,+∞),2x≤1”;
③若命題p為真,命題?q為真,則命題p且q為真.
④命題“若x=3,則x2-2x-3=0”的否命題是“x≠3,則x2-2x-3≠0”
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列敘述中正確的是( 。
A.命題“?x∈R,x+3>0”的否定是“?x∈R,x+3<0”
B.命題“若α=$\frac{π}{3}$,則cosα=$\frac{1}{2}$”的否命題是“若α=$\frac{π}{3}$,則cosα≠$\frac{1}{2}$”
C.在區(qū)間[-1,1]上隨機(jī)取一個(gè)數(shù)x,則事件“2x≤$\sqrt{2}$”發(fā)生的概率為$\frac{1}{4}$
D.“命題p∧q為真”是“命題p∨q為真”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若復(fù)數(shù)z=(m+1)-(m-3)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一或第三象限,則實(shí)數(shù)m的取值范圍是(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.對(duì)于復(fù)數(shù)z1,z2,如果復(fù)數(shù)(z1-i)•z2=1,那么稱z1是z2的“錯(cuò)位共軛復(fù)數(shù)”,則復(fù)數(shù)$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i的“錯(cuò)位共軛復(fù)數(shù)”z=( 。
A.$\frac{\sqrt{3}}{2}$+$\frac{3}{2}$iB.$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$iC.$\frac{\sqrt{3}}{6}$+$\frac{1}{2}$iD.-$\frac{\sqrt{3}}{6}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若集合M={α|α=sin$\frac{(5m-9)π}{3}$,m∈Z},N={β|β=cos$\frac{5(9-2n)π}{6}$,n∈Z},則M與N的關(guān)系是( 。
A.M?NB.M?NC.M=ND.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n是奇數(shù)}\\{{a}_{n}-3n,n是偶數(shù)}\end{array}\right.$,設(shè)bn=a2n-$\frac{3}{2}$,Sn為數(shù)列{bn}的前n項(xiàng)和.
(1)求a2,a3,b1,b2;
(2)證明數(shù)列{bn}是等比數(shù)列;
(3)求Sn

查看答案和解析>>

同步練習(xí)冊答案