【題目】南北朝時,張邱建寫了一部算經(jīng),即《張邱建算經(jīng)》,在這本算經(jīng)中,張邱建對等差數(shù)列的研究做出了一定的貢獻(xiàn).例如算經(jīng)中有一道題為:今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中間三人未到者,亦依等次更給,則某一等人比其下一等人多得________斤金.(不作近似計算)

【答案】

【解析】

根據(jù)題意將毎等人所得的黃金斤數(shù)構(gòu)造等差數(shù)列,設(shè)公差為d,根據(jù)題意和等差數(shù)列的前n項和公式列出方程組,求出公差d即可得到答案.

設(shè)第十等人得金斤,第九等人得金斤,以此類推,第一等人得金斤,

則數(shù)列構(gòu)成等差數(shù)列,設(shè)公差為,則每一等人比下一等人多得斤金,

由題意得,即

解得,

所以每一等人比下一等人多得斤金

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,射線的方程為,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為.一只小蟲從點沿射線向上以單位/min的速度爬行

1)以小蟲爬行時間為參數(shù),寫出射線的參數(shù)方程;

2)求小蟲在曲線內(nèi)部逗留的時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公園為了美化環(huán)境和方便顧客,計劃建造一座圓弧形拱橋,已知該橋的剖面如圖所示,共包括圓弧形橋面和兩條長度相等的直線型路面、,橋面跨度的長不超過米,拱橋所在圓的半徑為米,圓心在水面上,且所在直線與圓分別在連結(jié)點處相切.設(shè),已知直線型橋面每米修建費用是元,弧形橋面每米修建費用是.

1)若橋面(線段和弧)的修建總費用為元,求關(guān)于的函數(shù)關(guān)系式;

2)當(dāng)為何值時,橋面修建總費用最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究高二階段男生、女生對數(shù)學(xué)學(xué)科學(xué)習(xí)的差異性,在高二年級所有學(xué)生中隨機抽取25名男生和25名女生,計算他們高二上學(xué)期期中、期末和下學(xué)期期中、期末的四次數(shù)學(xué)考試成績的各自的平均分,并繪制成如圖所示的莖葉圖.

(1)請根據(jù)莖葉圖判斷,男生組與女生組哪組學(xué)生的數(shù)學(xué)成績較好?請用數(shù)據(jù)證明你的判斷;

(2)以樣本中50名同學(xué)數(shù)學(xué)成績的平均分x0(79.68分)為分界點,將各類人數(shù)填入如下的列聯(lián)表:

分?jǐn)?shù)

性別

高于或等于x0

低于x0

合計

男生

女生

合計

(3)請根據(jù)(2)中的列聯(lián)表,判斷能否有99%的把握認(rèn)為數(shù)學(xué)學(xué)科學(xué)習(xí)能力與性別有關(guān)?

附:K2=

PK2k0

0.050

0.025

0.010

0.005

0.001

k0

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級如下表:

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?

(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標(biāo)值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在等腰直角中,斜邊,D的中點,將沿折疊得到如圖(2)所示的三棱錐,若三棱錐的外接球的半徑為,則_________.

圖(1 圖(2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論fx)的單調(diào)性;

2)證明:當(dāng)﹣1a0時,fx)存在唯一的零點x0,且x0隨著a的增大而增大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).上的最大值為2,則實數(shù)a所有可能的取值組成的集合是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機運動計步已經(jīng)成為一種新時尚.某單位統(tǒng)計了職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:

1)求直方圖中a的值,并由頻率分布直方圖估計該單位職工一天步行數(shù)的中位數(shù);

2)若該單位有職工200人,試估計職工一天行走步數(shù)不大于13000的人數(shù);

3)在(2)的條件下,該單位從行走步數(shù)大于150003組職工中用分層抽樣的方法選取6人參加遠(yuǎn)足拉練活動,再從6人中選取2人擔(dān)任領(lǐng)隊,求這兩人均來自區(qū)間(150,170]的概率.

查看答案和解析>>

同步練習(xí)冊答案