【題目】已知圓與直線相切,設(shè)點為圓上一動點, 軸于,且動點滿足,設(shè)動點的軌跡為曲線.
(1)求曲線的方程;
(2)直線與直線垂直且與曲線交于兩點,求面積的最大值.
【答案】(1);(2).
【解析】試題分析:(1)先利用直線和圓相切求出圓的方程,再利用平面向量共線和“相關(guān)點法”求曲線的方程;(2)利用兩直線間的垂直關(guān)系設(shè)出直線方程,再聯(lián)立直線和橢圓的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系和三角形的面積公式得到表達式,再利用基本不等式求其最值.
試題解析:(1)設(shè)動點, ,因為軸于,所以,
由題意得: ,
所以圓的方程為.
由題意, ,所以,
所以,即
將代入圓,得動點的軌跡方程.
(2)由題意可設(shè)直線,設(shè)直線與橢圓交于, ,
聯(lián)立方程,得,
,解得,
,
又因為點到直線的距離, ,
.
(當(dāng)且僅當(dāng),即時取到最大值)
∴面積的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個圓柱形乒乓球筒,高為厘米,底面半徑為厘米.球筒的上底和下底分別粘有一個乒乓球,乒乓球與球筒底面及側(cè)面均相切(球筒和乒乓球厚度忽略不計).一個平面與兩乒乓球均相切,且此平面截球筒邊緣所得的圖形為一個橢圓,則該橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種多面體玩具共有12個面,在其十二個面上分別標(biāo)有數(shù)字1,2,3,…,12.若該玩具質(zhì)地均勻,則拋擲該玩具后,任何一個數(shù)字所在的面朝上的概率均相等.
為檢驗?zāi)撑婢呤欠窈细,制定檢驗標(biāo)準(zhǔn)為:多次拋擲該玩具,并記錄朝上的面上標(biāo)記的數(shù)字,若各數(shù)字出現(xiàn)的頻率的極差不超過0.05.則認為該玩具合格.
(1)對某批玩具中隨機抽取20件進行檢驗,將每個玩具各面數(shù)字出現(xiàn)頻率的極差繪制成莖葉圖(如圖所示),試估計這批玩具的合格率;
(2)現(xiàn)有該種類玩具一個,將其拋擲100次,并記錄朝上的一面標(biāo)記的數(shù)字,得到如下數(shù)據(jù):
朝上面的數(shù)字 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
次數(shù) | 9 | 7 | 8 | 6 | 10 | 9 | 9 | 8 | 10 | 9 | 7 | 8 |
1)試判定該玩具是否合格;
2)將該玩具拋擲一次,記事件:向上的面標(biāo)記數(shù)字是完全平方數(shù)(能寫成整數(shù)的平方形式的數(shù),如,9為完全平方數(shù));事件:向上的面標(biāo)記的數(shù)字不超過4.試根據(jù)上表中的數(shù)據(jù),完成以下列聯(lián)表(其中表示的對立事件),并回答在犯錯誤的概率不超過0.01的前提下,能否認為事件與事件有關(guān).
合計 | |||
合計 | 100 |
(參考公式及數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中錯誤的是( )
A. 在一次試卷分析中,從每個考室中抽取第5號考生的成績進行統(tǒng)計,不是簡單隨機抽樣
B. 對一個樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如下:
區(qū)間 | ||||||||
頻數(shù) | 1 | 1 | 3 | 3 | 18 | 16 | 28 | 30 |
估計小于29的數(shù)據(jù)大約占總體的
C. 設(shè)產(chǎn)品產(chǎn)量與產(chǎn)品質(zhì)量之間的線性相關(guān)系數(shù)為,這說明二者存在著高度相關(guān)
D. 通過隨機詢問110名性別不同的行人,對過馬路是愿意走斑馬線還是愿意走人行天橋進行抽樣調(diào)查,得到如表列聯(lián)表.
由,則有以上的把握認為“選擇過馬路方式與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量(升)關(guān)于行駛速度(千米/小時)的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.
(1)當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設(shè)甲、乙兩種大樹移栽的成活率分別為和,且各株大樹是否成活互不影響.求移栽的4株大樹中:
(1)兩種大樹各成活1株的概率;
(2)成活的株數(shù)ξ的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(江淮十校2017屆高三第一次聯(lián)考文數(shù)試題第7題)《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章計算弧田面積所用的經(jīng)驗公式為:弧田面積=1/2(弦矢+矢2).弧田(如圖),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,半徑等于4米的弧田.按照上述方法計算出弧田的面積約為( )
A. 6平方米 B. 9平方米 C. 12平方米 D. 15平方米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com