【題目】已知函數(shù)

(1)若為曲線的一條切線,求a的值;

(2)已知,若存在唯一的整數(shù),使得,求a的取值范圍.

【答案】1;(2

【解析】試題分析:(1)先求出,設出切點,利用切線方程求得,進而求得的值;(2)問題轉化為存在唯一的整數(shù),使的最小值小于零,利用導數(shù)求其極值,數(shù)形結合可得 ,且,即可得的取值范圍.

試題解析:

1)函數(shù)的定義域為,

設切點,則切線的斜率,

所以切線為,

因為恒過點,斜率為,且為的一條切線,

所以,

所以,所以

2)令,,

時,,,

,上遞增,

,又,

則存在唯一的整數(shù)使得,即;

時,為滿足題意,上不存在整數(shù)使,

上不存在整數(shù)使,

,

時,,

上遞減,

時,,

,;

時,,不符合題意.

綜上所述,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目的抽樣調查中,隨機抽取了100名電視觀眾,相關的數(shù)據(jù)如表所示:

類別

文藝節(jié)目

新聞節(jié)目

總計

20至40歲

40

18

58

大于40歲

15

27

42

總計

55

45

100

(1)由表中數(shù)據(jù)直觀分析,收看新聞節(jié)目的觀眾是否與年齡有關?

(2)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機抽取5名,則大于40歲的觀眾應該抽取幾名?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某小區(qū)準備將閑置的一直角三角形(其中∠B=,AB=a,BC=a)地塊開發(fā)成公共綠地,設計時,要求綠地部分有公共綠地走道MN,且兩邊是兩個關于走道MN對稱的三角形(△AMN和△A′MN),現(xiàn)考慮方便和綠地最大化原則,要求M點與B點不重合,A′落在邊BC上,設∠AMN=θ.

(1)若θ=時,綠地“最美”,求最美綠地的面積;

(2)為方便小區(qū)居民的行走,設計時要求將AN,A′N的值設計最短,求此時綠地公共走道的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某班一次數(shù)學測試成績的莖葉圖(如圖甲)和頻率分布直方圖(如圖乙)都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為,據(jù)此解答如下問題.(注:直方圖中對應的長方形的高度一樣)

(1)若按題中的分組情況進行分層抽樣,共抽取人,那么成績在之間應抽取多少人?

(2)現(xiàn)從分數(shù)在之間的試卷中任取份分析學生失分情況,設抽取的試卷分數(shù)在之間 份數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中是函數(shù)的導數(shù).

(1)求的單調區(qū)間;

(2)對于,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設正項數(shù)列的前項和,且滿足.

(Ⅰ)計算的值,猜想的通項公式,并證明你的結論;

(Ⅱ)設是數(shù)列的前項和,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與直線相切,設點為圓上一動點, 軸于,且動點滿足,設動點的軌跡為曲線

(1)求曲線的方程;

(2)直線與直線垂直且與曲線交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調性;

(2)若,求證:函數(shù)有且只有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最小值為其中.

(1)的值;

(2)若對任意的,有成立,求實數(shù)的范圍;

(3)證明:

查看答案和解析>>

同步練習冊答案