【題目】已知函數(shù) .
(1)判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調(diào)性,并用定義證明其結(jié)論;
(2)求函數(shù)f(x)在區(qū)間[2,9]上的最大值與最小值.
【答案】
(1)解:f(x)在區(qū)間[0,+∞)上是增函數(shù).
證明如下:
任取x1,x2∈[0,+∞),且x1<x2,
= = .
∵x1﹣x2<0,(x1+1)(x2+1)>0,
∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).
∴函數(shù)f(x)在區(qū)間[0,+∞)上是增函數(shù)
(2)解:由(1)知函數(shù)f(x)在區(qū)間[2,9]上是增函數(shù),
故函數(shù)f(x)在區(qū)間[2,9]上的最大值為 ,
最小值為
【解析】(1)根據(jù)函數(shù)單調(diào)性的定義可證明結(jié)果。(2)根據(jù)函數(shù)的單調(diào)性以及二次函數(shù)在指定區(qū)間上的最值可得結(jié)果。
【考點精析】關(guān)于本題考查的函數(shù)的最值及其幾何意義,需要了解利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲挡拍艿贸稣_答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知平面向量 , 滿足| |=1,| |=2.
(1)若 與 的夾角θ=120°,求| + |的值;
(2)若(k + )⊥(k ﹣ ),求實數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1=2, ;數(shù)列{bn}的前n項和為Sn , 且 . (Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)把數(shù)列{an}和{bn}的公共項從小到大排成新數(shù)列{cn},試寫出c1 , c2 , 并證明{cn}為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d不等于0,Sn是其前n項和,給出下列命題:
①給定n(n≥2,且n∈N*),對于一切k∈N*(k<n),都有an﹣k+an+k=2an成立;
②存在k∈N* , 使得ak﹣ak+1與a2k+1﹣a2k﹣3同號;
③若d>0.且S3=S8 , 則S5與S6都是數(shù)列{Sn}中的最小項
④點(1, ),(2, ),(3, ),…,(n, )(n∈N*),…,在同一條直線上.
其中正確命題的序號是 . (把你認為正確的命題序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校擬在廣場上建造一個矩形花園,如圖所示,中間是完全相同的兩個橢圓型花壇,每個橢圓型花壇的面積均為216π平方米,兩個橢圓花壇的距離是1.5米.整個矩形花壇的占地面積為S.
(注意:橢圓面積為πab,其中a,b分別為橢圓的長短半軸長)
(1)根據(jù)圖中所給數(shù)據(jù),試用a、b表示S;
(2)當橢圓形花壇的長軸長為多少米時,所建矩形花園占地最少?并求出最小面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,半徑為2的半圓有一內(nèi)接梯形ABCD,它的下底AB是⊙O的直徑,上底CD的端點在圓周上.若雙曲線以A、B為焦點,且過C、D兩點,則當梯形ABCD的周長最大時,雙曲線的實軸長為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域為[a﹣1,2a],則( )
A. ,b=0
B.a=﹣1,b=0
C.a=1,b=1
D.a= ,b=﹣1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5],
(1)當a=﹣1時,求函數(shù)的最大值和最小值;
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)減函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是 .
①任意x∈R,都有3x>2x;
②若a>0,且a≠1,M>0,N>0,則有l(wèi)oga(M+N)=logaMlogaN;
③ 的最大值為1;
④在同一坐標系中,y=2x與 的圖象關(guān)于y軸對稱.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com