15.已知z(2+i)=1+ai,a∈R,i為虛數(shù)單位,若z為純虛數(shù),則a=-2.

分析 利用兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法法則,虛數(shù)單位i的冪運(yùn)算性質(zhì)求得z,再根據(jù)z為純虛數(shù),求得a的值.

解答 解:∵z(2+i)=1+ai,a∈R,i為虛數(shù)單位,∴z=$\frac{1+ai}{2+i}$=$\frac{(1+ai)(2-i)}{5}$=$\frac{a+2+(2a-1)i}{5}$,
若z為純虛數(shù),則a+2=0,求得a=-2,
故答案為:-2.

點(diǎn)評(píng) 本題主要考查兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),純虛數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=xsinx+cosx的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.二項(xiàng)式($\frac{x}{3}$+$\frac{3}{x}$)10的展開式中不含x的項(xiàng)是第6項(xiàng),即252..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}+\overrightarrow+\overrightarrow{c}$=$\overrightarrow{0}$,且$\overrightarrow{a}$與$\overrightarrow$的夾角余弦為$\frac{1}{5}$,$\overrightarrow$與$\overrightarrow{c}$的夾角余弦為為-$\frac{1}{3}$,|$\overrightarrow$|=1,則$\overrightarrow{a}$•$\overrightarrow{c}$的值為$\frac{26\sqrt{3}+51}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={1,2,3},B={3,4},則A∪B=( 。
A.{1,2}B.{1,2,3,4}C.{1,2,3}D.{1,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若函數(shù)y=cosx的值域是[0,1],則x的取值范圍是[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)a=($\frac{3}{4}$)0.5,b=($\frac{4}{3}$)0.4,c=log${\;}_{\frac{3}{4}}$(log34),則a,b,c相互之間的大小關(guān)系為c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的左焦點(diǎn)為F(-1,0),且橢圓上的點(diǎn)到點(diǎn)F的距離最小值為$\sqrt{2}-1$.
(1)求橢圓的方程;
(2)已知經(jīng)過(guò)點(diǎn)F的動(dòng)直線l與橢圓交于不同的兩點(diǎn)A,B,點(diǎn)$M(-\frac{5}{4},0)$,證明:$\overline{MA}•\overline{MB}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)中,?a∈R,都有f(a)+f(-a)=1成立的是(  )
A.f(x)=ln$\sqrt{1+{x}^{2}}$B.f(x)=cos2(x-$\frac{π}{4}$)C.f(x)=$\frac{(x-1)^{2}}{1+{x}^{2}}$D.f(x)=$\frac{{2}^{x}}{{2}^{x}-1}$

查看答案和解析>>

同步練習(xí)冊(cè)答案