【題目】已知f(x)=|2x-1|-|x+1|.
(1)將f(x)的解析式寫成分段函數(shù)的形式,并作出其圖象;
(2)若a+b=1,對a,b∈(0,+∞),+≥3f(x)恒成立,求x的取值范圍.
【答案】(1)見解析(2)[-1,5]
【解析】試題分析:(1)討論x的范圍:x<﹣1,﹣1≤x≤,x>,去絕對值,可得f(x)的分段函數(shù)的解析式,由分段函數(shù)圖象畫法可得其圖象;
(2)運用乘1法和基本不等式,可得+的最小值,由題意可得|2x﹣1|﹣|x+1|≤3,結(jié)合圖象即可得到所求x的范圍.
試題解析:
(1)由已知,得f(x)=
函數(shù)f(x)的圖象如圖所示.
(2)∵a,b∈(0,+∞),且a+b=1,
∴+= (a+b)=5+≥5+2=9,當(dāng)且僅當(dāng)=,即a=,b=時等號成立.
∵+≥3(|2x-1|-|x+1|)恒成立,
∴|2x-1|-|x+1|≤3,
結(jié)合圖象知-1≤x≤5,
∴x的取值范圍是[-1,5].
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機軟件層出不窮,現(xiàn)從某市使用和兩款訂餐軟件的商家中分別隨機抽取100個商家,對它們的“平均送達時間”進行統(tǒng)計,得到頻率分布直方圖如下:
(1)使用訂餐軟件的商家中“平均送達時間”不超過30分鐘的商家有多少個?
(2)試估計該市使用款訂餐軟件的商家的“平均送達時間”的眾數(shù)及中位數(shù);
(3)如果以“平均送達時間”的平均數(shù)作為決策依據(jù),從和兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校微信公眾號收到非常多的精彩留言,學(xué)校從眾多留言者中抽取了100人參加“學(xué)校滿意度調(diào)查”,其留言者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如下:
(1)求這100位留言者年齡的平均數(shù)和中位數(shù);
(2)學(xué)校從參加調(diào)查的年齡在和的留言者中,按照分層抽樣的方法,抽出了6人參加“精彩留言”經(jīng)驗交流會,贈與年齡在的留言者每人一部價值1000元的手機,年齡在的留言者每人一套價值700元的書,現(xiàn)要從這6人中選出3人作為代表發(fā)言,求這3位發(fā)言者所得紀念品價值超過2300元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1)所示,橢圓的中心在原點,焦點F1、F2在x軸上,A、B是橢圓的頂點,P是橢圓上一點,且PF1⊥x軸,PF2∥AB,求此橢圓的離心率;
(2)如圖(2)所示,雙曲線的一個焦點為F,虛軸的一個端點為B,如果直線FB與該雙曲線的一條漸近線垂直,求此雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F為拋物線C:x2=2py (p>0) 的焦點,點A(m,3)在拋物線C上,且|AF|=5,若點P是拋物線C上的一個動點,設(shè)點P到直線的距離為,設(shè)點P到直線的距離為.
(1)求拋物線C的方程;
(2) 求的最小值;
(3)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個部件由三個元件按如圖所示的方式連接而成,元件1或元件2正常工作,且元件3正常工作,則部件正常工作.設(shè)三個電子元件的使用壽命(單位:時)均服從正態(tài)分布N(1000,502),且各個元件能否正常工作相互獨立,那么該部件的使用壽命超過1000小時的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(1)求證:AB1⊥平面A1BD;
(2)求銳二面角A-A1D-B的余弦值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com