A. | 13項(xiàng) | B. | 14項(xiàng) | C. | 15項(xiàng) | D. | 16項(xiàng) |
分析 a=2${∫}_{-3}^{3}$(x+|x|)dx=$2{∫}_{-3}^{0}(x-x)dx$+2${∫}_{0}^{3}2xdx$=18.再利用通項(xiàng)公式即可得出.
解答 解:a=2${∫}_{-3}^{3}$(x+|x|)dx=$2{∫}_{-3}^{0}(x-x)dx$+2${∫}_{0}^{3}2xdx$=18.
則在$(\sqrt{x}-\frac{1}{\root{3}{x}})^{18}$的通項(xiàng)公式:Tr+1=${∁}_{18}^{r}$$(\sqrt{x})^{18-r}$$(-\frac{1}{\root{3}{x}})^{r}$=(-1)r${∁}_{18}^{r}$${x}^{9-\frac{5r}{6}}$.(r=0,1,2,…,18).
只有r=0,6,12,18時(shí)x的冪指數(shù)是整數(shù),因此x的冪指數(shù)不是整數(shù)的項(xiàng)共有19-4=15.
故選:C.
點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的通項(xiàng)公式、微積分基本定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f({2^x})<f(\frac{lna}{a})<f[{(\frac{lna}{a})^2}]$ | B. | $f(\frac{lna}{a})<f[{(\frac{lna}{a})^2}]<f({2^x})$ | ||
C. | $f(\frac{lna}{a})<f({2^x})<f[{(\frac{lna}{a})^2}]$ | D. | $f({2^x})<f[{(\frac{lna}{a})^2}]<f(\frac{lna}{a})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p為假 | B. | ¬q為真 | C. | p∨q為真 | D. | p∧q為假 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com