如圖,海平面某區(qū)域內(nèi)有A、B、C三座小島(視小島為點(diǎn)),島C在A的北偏東70°方向,島B在C的南偏西40°方向,島B在A的南偏東65°方向,且A、B兩島間的距離為3n mile.求A、C兩島間的距離.
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:應(yīng)用題,解三角形
分析:先求出∠ABC=105°,再在三角形ABC中,由正弦定理可得AC.
解答: 解:由題意可知∠CAB=45°,∠ACB=30°.  …(4分)
則∠ABC=105°. …(6分)
在三角形ABC中,由正弦定理可得
AC
sin105°
=
AB
sin30°
.  …(8分)
∴AC=6sin105°=
3
2
6
+
2
). …(12分)
答:A、C兩島間的距離為
3
2
6
+
2
)n mile.  …(14分)
點(diǎn)評(píng):正確認(rèn)識(shí)方向角的含義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x+y≤4
y≥x
x+1≥0
畫(huà)出可行域.并求z=2x-y的最大、最小值,及取最大最小值時(shí)的x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=
1
4
,a2=
3
4
,2an=an+1+an-1(n≥2,n∈N),數(shù)列{bn}滿足:b1<0,3bn-bn-1=n(n≥2,n∈R),數(shù)列{bn}的前n項(xiàng)和為Sn
(Ⅰ)求證:數(shù)列{bn-an}為等比數(shù)列;
(Ⅱ)求證:數(shù)列{bn}為遞增數(shù)列;
(Ⅲ)若當(dāng)且僅當(dāng)n=3時(shí),Sn取得最小值,求b1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{bn}滿足b1=2,bn=
bn-1
1+bn-1
,(n≥2,n∈N+
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{
2n+1
bn
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ln(ex+1)-ax是偶函數(shù),g(x)=ex+be-x是奇函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)判斷g(x)的單調(diào)性(不要求證明);
(Ⅲ)若不等式g(f(x))>g(m-x)在[1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A={x|x是小于9的正整數(shù)},B={1,2,3},C={3,4,5,6}.求:
(1)B∩C;
(2)∁A(B∪C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

分別在集合A={1,2,3…50},和集合B={51,52…100}中各取一個(gè)數(shù).
(1)求其和為偶數(shù)的概率;
(2)求其積為偶數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值.
(Ⅰ)log864+3log32+(
3
-
2
0+(-
2
3
-1-(3
3
8
)
1
3

(Ⅱ)(lg5)2+2lg2-(lg2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+3x ,x≥0
3x-x2 , x<0
,若f(a2-6)+f(-a)>0,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案