【題目】已知點(diǎn)為橢圓的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等邊三角形,直線與橢圓有且僅有一個(gè)交點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與軸交于,過點(diǎn)的直線與橢圓交于兩不同點(diǎn),,若,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程,只要求出參數(shù),由于有,因此要列出關(guān)于的兩個(gè)方程,而由條件兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等邊三角形得,再利用已知直線與橢圓只有一個(gè)公共點(diǎn),即判別式為0可求得橢圓方程;
(Ⅱ)由(Ⅰ)得點(diǎn)的坐標(biāo),從而可得,要求范圍只要求得的范圍,為此可直線分類,對(duì)斜率不存在時(shí),求得,而當(dāng)直線斜率存在時(shí),可設(shè)出直線方程為,同時(shí)設(shè),則,由韋達(dá)定理可把表示為的函數(shù),注意直線與橢圓相交,判別式>0,確定的范圍,從而可得的范圍,最后可得的取值范圍.
試題解析:(Ⅰ)由題意,得,則橢圓為:,
由,得 ,
直線與橢圓有且僅有一個(gè)交點(diǎn),
,
橢圓的方程為 ;
(Ⅱ)由(Ⅰ)得,直線與軸交于 ,
,
當(dāng)直線與軸垂直時(shí), ,
由 ,
當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為, ,
由 ,
依題意得,,且 ,
,
,
,
綜上所述,的取值范圍是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年1月4日,據(jù)“央視財(cái)經(jīng)”微信公眾號(hào)消息,點(diǎn)外賣已成為眾多消費(fèi)者一大常規(guī)的就餐形式,外賣員也成為了一種職業(yè).為調(diào)查某外賣平臺(tái)外賣員的送餐收入,現(xiàn)從該平臺(tái)隨機(jī)抽取100名點(diǎn)外賣的用戶進(jìn)行統(tǒng)計(jì),按送餐距離分類統(tǒng)計(jì)得如下頻率分布直方圖:
將上述調(diào)查所得到的頻率視為概率.
(1)求的值,并估計(jì)利用該外賣平臺(tái)點(diǎn)外賣用戶的平均送餐距離;
(2)若該外賣平臺(tái)給外賣員的送餐費(fèi)用與送餐距離有關(guān),規(guī)定2千米內(nèi)為短距離,每份3元,2千米到4千米為中距離,每份5元,超過4千米為遠(yuǎn)距離,每份9元.
(i)記為外賣員送一份外賣的牧入(單位:元),求的分布列和數(shù)學(xué)期望;
(ii)若外賣員一天的收入不低于150元,試?yán)蒙鲜鰯?shù)據(jù)估計(jì)該外賣員一天的送餐距離至少為多少千米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)寫出當(dāng)時(shí)直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn),直線與曲線相交于不同的兩點(diǎn),,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為預(yù)防病毒爆發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測(cè)試該疫苗的有效性(若疫苗有效的概率小于%,則認(rèn)為測(cè)試沒有通過),公司選定個(gè)流感樣本分成三組,測(cè)試結(jié)果如下表:
組 | 組 | 組 | |
疫苗有效 | |||
疫苗無(wú)效 |
已知在全體樣本中隨機(jī)抽取個(gè),抽到組疫苗有效的概率是.
(Ⅰ)求的值;
(Ⅱ)現(xiàn)用分層抽樣的方法在全體樣本中抽取個(gè)測(cè)試結(jié)果,問應(yīng)在組抽取多少個(gè)?
(Ⅲ)已知,,求不能通過測(cè)試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一所學(xué)校計(jì)劃舉辦“國(guó)學(xué)”系列講座.由于條件限制,按男、女生比例采用分層抽樣的方法,從某班選出10人參加活動(dòng).在活動(dòng)前對(duì)所選的10名同學(xué)進(jìn)行了國(guó)學(xué)素養(yǎng)測(cè)試,這10名同學(xué)的性別和測(cè)試成績(jī)(百分制)的莖葉圖如圖.
(1)根據(jù)這10名同學(xué)的測(cè)試成績(jī),估計(jì)該班男、女生國(guó)學(xué)素養(yǎng)測(cè)試的平均成績(jī);
(2)若成績(jī)大于等于75分為優(yōu)良,從這10名同學(xué)中隨機(jī)選取2名男生,2名女生,求這4名同學(xué)的國(guó)學(xué)素養(yǎng)測(cè)試成績(jī)均為優(yōu)良的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知雙曲線的離心率,雙曲線上任意一點(diǎn)到其右焦點(diǎn)的最小距離為.
(1)求雙曲線的方程.
(2)過點(diǎn)是否存在直線,使直線與雙曲線交于兩點(diǎn),且點(diǎn)是線段的中點(diǎn)?若直線存在,請(qǐng)求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,圓的直角坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)),射線的極坐標(biāo)方程為.
(1)求圓和直線的極坐標(biāo)方程;
(2)已知射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明;
(3)當(dāng)a>1時(shí),求使f(x)>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知國(guó)家某級(jí)大型景區(qū)對(duì)擁擠等級(jí)與每日游客數(shù)量(單位:百人)的關(guān)系有如下規(guī)定:當(dāng)時(shí),擁擠等級(jí)為“優(yōu)”;當(dāng)時(shí),擁擠等級(jí)為“良”;當(dāng)時(shí),擁擠等級(jí)為“擁擠”;當(dāng)時(shí),擁擠等級(jí)為“嚴(yán)重?fù)頂D”.該景區(qū)對(duì)6月份的游客數(shù)量作出如圖的統(tǒng)計(jì)數(shù)據(jù):
(1)下面是根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到的頻率分布表,求出的值,并估計(jì)該景區(qū)6月份游客人數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
游客數(shù)量(單位:百人) | ||||
天數(shù) | 10 | 4 | 1 | |
頻率 |
(2)某人選擇在6月1日至6月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級(jí)均為“優(yōu)”的頻率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com