2.等差數(shù)列{an}的前m項(xiàng)和為30,前2m項(xiàng)和為100,求數(shù)列{an}的前3m項(xiàng)的和S3m;
(2)兩個(gè)等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn和Tn,已知$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+2}{n+3}$,求$\frac{{a}_{5}}{_{5}}$的值.

分析 (1)由等差數(shù)列{an}的性質(zhì)可得:Sm,S2m-Sm,S3m-S2m也成等差數(shù)列,即可得出.
(2)利用等差數(shù)列的性質(zhì)$\frac{{a}_{5}}{_{5}}$=$\frac{{S}_{9}}{{T}_{9}}$即可得出.

解答 解:(1)由等差數(shù)列{an}的性質(zhì)可得:Sm,S2m-Sm,S3m-S2m也成等差數(shù)列,
∴2(S2m-Sm)=Sm+S3m-S2m
∴2×(100-30)=30+S3m-100,解得S3m=210.
(2)∵兩個(gè)等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn和Tn,滿足$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+2}{n+3}$,
∴$\frac{{a}_{5}}{_{5}}$=$\frac{\frac{9({a}_{1}+{a}_{9})}{2}}{\frac{9(_{1}+_{9})}{2}}$=$\frac{{S}_{9}}{{T}_{9}}$=$\frac{7×9+2}{9+3}$=$\frac{65}{12}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且滿足asinAsinB+bcos2A=$\sqrt{3}$a,cosB=$\frac{{\sqrt{6}}}{3}$,c=2$\sqrt{6}$
(Ⅰ)求sinA;
(Ⅱ) 求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)M、N分別為邊BC,CD上的動(dòng)點(diǎn),且MN=2,則$\overrightarrow{AM}$•$\overrightarrow{AN}$的最小值是( 。
A.13B.15C.17D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.y=cos($\frac{π}{3}$+x)沿x軸向左平移φ(φ>0)個(gè)單位后的圖象關(guān)于y軸對(duì)稱(chēng),則φ的最小值是( 。
A.$\frac{5}{6}π$B.$\frac{2}{3}π$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若A=60°,B=45°,a=3$\sqrt{2}$,則b=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-λ,等差數(shù)列{bn}滿足b1=a1,b1+b2+b3=9.
(1)求λ的值,并求{an},{bn}的通項(xiàng)公式;
(2)若cn=$\frac{{S}_{n}+1}{{S}_{n}•{S}_{n+1}}$,設(shè)數(shù)列{cn}的前n項(xiàng)和為T(mén)n,證明Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,4),且向量n$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+2$\overrightarrow$共線,則實(shí)數(shù)n=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知直線x-$\sqrt{3}$y+2=0過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn),且與雙曲線的一條漸近線垂直,則雙曲線的實(shí)軸為( 。
A.2B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在直角坐標(biāo)系中,定義兩點(diǎn)A(x1,y1),B(x2,y2)之間的“直角距離”為d(A,B)=|x1-x2|+|y1-y2|.
現(xiàn)有以下命題:
①若A,B是x軸上兩點(diǎn),則d(A,B)=|x1-x2|;
②已知點(diǎn)A(1,2),點(diǎn)B(cos2θ,sin2θ),則d(A,B)為定值;
③已知點(diǎn)A(2,1),點(diǎn)B在圓x2+y2=1上,則d(A,B)的取值范圍是(3-$\sqrt{2}$,3+$\sqrt{2}$);
④若|AB|表示A,B兩點(diǎn)間的距離,那么|AB|≥$\frac{\sqrt{2}}{2}$d(A,B).
其中真命題的是①②④(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案