分析 由題意設(shè)a=n、b=n+1、c=n+2(n∈N+),由邊角關(guān)系可得C=2A,由正弦定理和余弦定理列出方程,求出n、三邊、cosA的值,由平方關(guān)系求出sinA,代入三角形面積公式即可求出△ABC的面積.
解答 解:由題意設(shè)a=n、b=n+1、c=n+2(n∈N+),
∵最大角是最小角的2倍,∴C=2A,
由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}$,則$\frac{n}{sinA}=\frac{n+2}{sin2A}$,
∴$\frac{n}{sinA}=\frac{n+2}{2sinAcosA}$,得cosA=$\frac{n+2}{2n}$,
由余弦定理得,cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{(n+1)}^{2}+{(n+2)}^{2}-{n}^{2}}{2(n+1)(n+2)}$,
∴$\frac{{(n+1)}^{2}+{(n+2)}^{2}-{n}^{2}}{2(n+1)(n+2)}$=$\frac{n+2}{2n}$,
化簡(jiǎn)得,n=4,
∴a=4、b=5、c=6,cosA=$\frac{3}{4}$,
又0<A<π,∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{7}}{4}$,
∴△ABC的面積S=$\frac{1}{2}bcsinA$=$\frac{1}{2}×5×6×\frac{\sqrt{7}}{4}$=$\frac{15\sqrt{7}}{4}$.
點(diǎn)評(píng) 本題考查正弦定理和余弦定理,邊角關(guān)系,三角形的面積公式的綜合應(yīng)用,以及方程思想,考查化簡(jiǎn)、計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 3 | C. | 0 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{17}{8}$ | C. | $\frac{{3\sqrt{3}-1}}{2}$ | D. | $\frac{{3\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | -$\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com