【題目】如圖,河的兩岸分別有生活小區(qū),其中,三點(diǎn)共線,的延長(zhǎng)線交于點(diǎn),測(cè)得,,,,若以所在直線分別為軸建立平面直角坐標(biāo)系則河岸可看成是曲線(其中是常數(shù))的一部分,河岸可看成是直線(其中為常數(shù))的一部分.

1)求的值.

2)現(xiàn)準(zhǔn)備建一座橋,其中分別在上,且,的橫坐標(biāo)為.寫出橋的長(zhǎng)關(guān)于的函數(shù)關(guān)系式,并標(biāo)明定義域;當(dāng)為何值時(shí),取到最小值?最小值是多少?

【答案】1,.2;當(dāng)時(shí)取到最小值,為

【解析】

1)計(jì)算,,,將點(diǎn)代入直線方程計(jì)算得到答案.

2)計(jì)算,得到,再利用均值不等式計(jì)算得到答案.

1)由題意得:,∴,,,

代入,解得:,

,代入,解得.

2)由(1)得:點(diǎn)在上,∴,

①橋的長(zhǎng)到直線的距離,

;

②由①得:,

,∴,

當(dāng)且僅當(dāng)時(shí)即“=”成立,∴.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,,平面平面,點(diǎn)為棱的中點(diǎn).

(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說(shuō)明理由;

(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】基于移動(dòng)網(wǎng)絡(luò)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國(guó),給人們帶來(lái)新的出行體驗(yàn),某共享單車運(yùn)營(yíng)公司的市場(chǎng)研究人員為了了解公司的經(jīng)營(yíng)狀況,對(duì)公司最近6個(gè)月的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代碼

1

2

3

4

5

6

11

13

16

15

20

21

(1)請(qǐng)用相關(guān)系數(shù)說(shuō)明能否用線性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請(qǐng)計(jì)算出關(guān)于的線性回歸方程,如果不能,請(qǐng)說(shuō)明理由;

(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購(gòu)一批單車擴(kuò)大市場(chǎng),從成本1000元/輛的型車和800元/輛的型車中選購(gòu)一種,兩款單車使用壽命頻數(shù)如下表:

車型 報(bào)廢年限

1年

2年

3年

4年

總計(jì)

10

30

40

20

100

15

40

35

10

100

經(jīng)測(cè)算,平均每輛單車每年能為公司帶來(lái)500元的收入,不考慮除采購(gòu)成本以外的其它成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤(rùn)的估計(jì)值為決策依據(jù),如果你是公司負(fù)責(zé)人,會(huì)選擇哪款車型?

參考數(shù)據(jù):,.

參考公式:相關(guān)系數(shù),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正三棱柱ABCA1B1C1中,已知AB1,AA12,EF,G分別是棱AA1,ACA1C1的中點(diǎn),以為正交基底,建立如圖所示的空間直角坐標(biāo)系F-xyz.

1)求異面直線ACBE所成角的余弦值;

2)求二面角F-BC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)當(dāng)時(shí),過(guò)原點(diǎn)分別做曲線 的切線,若兩切線的斜率互為倒數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,點(diǎn)為橢圓上任意一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),有,且當(dāng)的面積最大時(shí)為等邊三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)與圓相切的直線交橢圓,兩點(diǎn),若橢圓上存在點(diǎn)滿足,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國(guó)鐵路營(yíng)業(yè)里程達(dá)到13.1萬(wàn)公里,其中高鐵營(yíng)業(yè)里程2.9萬(wàn)公里,超過(guò)世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營(yíng)里程(單位:萬(wàn)公里)的折線圖,以下結(jié)論不正確的是( )

A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營(yíng)里程增加最顯著

B.從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程與年價(jià)正相關(guān)

C.2018年高鐵運(yùn)營(yíng)里程比2014年高鐵運(yùn)營(yíng)里程增長(zhǎng)80%以上

D.從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程數(shù)依次成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的偶函數(shù),當(dāng)時(shí),.

1)用分段函數(shù)形式寫出的解析式;

2)寫出的單調(diào)區(qū)間;

3)求出函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校一個(gè)校園景觀的主題為“托起明天的太陽(yáng)”,其主體是一個(gè)半徑為5米的球體,需設(shè)計(jì)一個(gè)透明的支撐物將其托起,該支撐物為等邊圓柱形的側(cè)面,厚度忽略不計(jì).軸截面如圖所示,設(shè).(注:底面直徑和高相等的圓柱叫做等邊圓柱.)

(1)用表示圓柱的高;

(2)實(shí)踐表明,當(dāng)球心和圓柱底面圓周上的點(diǎn)的距離達(dá)到最大時(shí),景觀的觀賞效

果最佳,求此時(shí)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案