已知公差大于零的等差數(shù)列{an},各項(xiàng)均為正數(shù)的等比數(shù)列{bn},滿足a1=1,b1=2,a4=b2,a8=b3 求數(shù)列{an}和{bn}的通項(xiàng)公式.
考點(diǎn):等比數(shù)列的通項(xiàng)公式,等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)數(shù)列{an}的公差為d(d>0),數(shù)列{bn}的公比為q,由等比中項(xiàng)的性質(zhì),求得得公差和公比,代入等差數(shù)列和等比數(shù)列的通項(xiàng)公式得答案;
解答: 解:設(shè)數(shù)列{an}的公差為d(d>0),數(shù)列{bn}的公比為q,
∵a1=1,b1=2,a4=b2=a1+3d=1+3d,a8=b3=a1+7d=1+7d,
∴b22=b1•b3
∴(1+3d)2=1×(1+7d),
解得d=
1
9
,或d=0(舍去),
∴a4=b2=a1+3d=1+3d=1+
1
3
=
4
3
,
∴q=
b2
b1
=
4
3

∴an=1+
1
3
(n-1)=
1
3
(n+2),bn=(
4
3
)n-1
,
點(diǎn)評(píng):本題考查了等差數(shù)列和等比數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|y=x2-1},B={y|y=x2-1},則A∩B( 。
A、∅B、AC、BD、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐的高為h,底面半徑為r,過(guò)兩條母線作一截面,截得底面圓弧的
1
4
,求該截面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)半徑為3米的水輪,水輪圓心O距離水面2米,已知水輪每分鐘轉(zhuǎn)動(dòng)四圈,水輪上的點(diǎn)P相對(duì)于水面的高度y(米)與時(shí)間x(秒)滿足函數(shù)關(guān)系y=Asin(ωx+φ)+2(A>0,ω>0,φ∈(-
π
2
π
2
)),且初始位置時(shí)y=
7
2
,則函數(shù)表達(dá)式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求f(x)=
1-x2
x+3
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-2,0),B(2,0)為橢圓C的左、右頂點(diǎn),F(xiàn)為其右焦點(diǎn),P是橢圓C上異于A,B的動(dòng)點(diǎn),△APB面積的最大值為2
3

(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線AP的傾斜角為
4
,且與橢圓在點(diǎn)B處的切線交于點(diǎn)D,試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:
5
是無(wú)理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在等腰直角三角形ABC中,∠C=90°,D是B的中點(diǎn),E是AB上一點(diǎn),且AE=2EB,求證:AD⊥CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線2x+3y-4=0與直線6x+4y+3=0關(guān)于直線l對(duì)稱,求l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案