設(shè)直線和圓相交于點(diǎn)
(1)求弦的垂直平分線方程;(2)求弦的長(zhǎng)。

(1) (2)

解析試題分析:(1)圓方程可整理為:
所以,圓心坐標(biāo)為,半徑,
易知弦的垂直平分線過圓心,且與直線垂直,
,所以,由點(diǎn)斜式方程可得:,
整理得:。即的垂直平分線的方程為。
(2)圓心到直線的距離,
。弦的長(zhǎng)為。
考點(diǎn):直線與圓相交的位置關(guān)系
點(diǎn)評(píng):直線與圓相交時(shí)常用到的知識(shí)點(diǎn):弦的垂直平分線過圓心,圓心到直線的距離,弦長(zhǎng)的一半及圓的半徑構(gòu)成直角三角形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)狱c(diǎn)到定點(diǎn)與到定點(diǎn)的距離之比為.
(1)求動(dòng)點(diǎn)的軌跡C的方程,并指明曲線C的軌跡;
(2)設(shè)直線,若曲線C上恰有三個(gè)點(diǎn)到直線的距離為1,求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知以點(diǎn)為圓心的圓與軸交于點(diǎn),與軸交于點(diǎn),其中為坐標(biāo)原點(diǎn)。
(1)求證:的面積為定值;
(2)設(shè)直線與圓交于點(diǎn),若,求圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線在極坐標(biāo)系中的方程為,圓C在極坐標(biāo)系中的方程為,求圓C被直線截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓交于A、B兩點(diǎn);
(1)求過A、B兩點(diǎn)的直線方程;
(2)求過A、B兩點(diǎn),且圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求經(jīng)過三點(diǎn)A,B(),  C(0,6)的圓的方程,并指出這個(gè)圓的半徑和圓心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:以點(diǎn)C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(Ⅰ)求證:△OAB的面積為定值;
(Ⅱ)設(shè)直線y = –2x+4與圓C交于點(diǎn)M, N,若|OM| = |ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)已知直線經(jīng)過點(diǎn),且和圓相交,截得的弦長(zhǎng)為4,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)如圖,A點(diǎn)在x軸上方,外接圓半徑,弦軸上且軸垂直平分邊,
(1)求外接圓的標(biāo)準(zhǔn)方程
(2)求過點(diǎn)且以為焦點(diǎn)的橢圓方程

查看答案和解析>>

同步練習(xí)冊(cè)答案