已知?jiǎng)狱c(diǎn)到定點(diǎn)與到定點(diǎn)的距離之比為.
(1)求動(dòng)點(diǎn)的軌跡C的方程,并指明曲線C的軌跡;
(2)設(shè)直線,若曲線C上恰有三個(gè)點(diǎn)到直線的距離為1,求實(shí)數(shù)的值。

(1);(2).

解析試題分析:(1)根據(jù)題意列式計(jì)算;(2)直線,若曲線C上恰有三個(gè)點(diǎn)到直線的距離為1,說(shuō)明圓心到此直線的距離也為,列式計(jì)算即可.
試題解析:(1)根據(jù)題意有,化簡(jiǎn)整理得
;6分 
(2) 直線,若曲線C上恰有三個(gè)點(diǎn)到直線的距離為1,說(shuō)明圓心到此直線的距離也為,因?yàn)橛桑?)得出的圓的方程為圓心坐標(biāo)為,所以解得
  12分
考點(diǎn):直線和圓的位置關(guān)系、點(diǎn)到直線的距離公式、曲線方程的求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知以點(diǎn)C (t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)OA,與y軸交于點(diǎn)O,B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2xy-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設(shè)P,Q分別是直線lxy+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓與圓外切于點(diǎn),直線是兩圓的外公切線,分別與兩圓相切于兩點(diǎn),是圓的直徑,過(guò)作圓的切線,切點(diǎn)為.

(Ⅰ)求證:三點(diǎn)共線;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面內(nèi)兩點(diǎn)(-1,1),(1,3).
(Ⅰ)求過(guò)兩點(diǎn)的直線方程;
(Ⅱ)求過(guò)兩點(diǎn)且圓心在軸上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)P(0,5)及圓C:x2+y2+4x-12y+24=0
(I)若直線l過(guò)點(diǎn)P且被圓C截得的線段長(zhǎng)為4,求l的方程;
(II)求過(guò)P點(diǎn)的圓C的弦的中點(diǎn)D的軌跡方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知以點(diǎn) 為圓心的圓與直線 相切,過(guò)點(diǎn)的動(dòng)直線 與圓 相交于兩點(diǎn),的中點(diǎn),直線相交于點(diǎn) .

(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓,直線 與圓交與兩點(diǎn),點(diǎn).
(1)當(dāng)時(shí),求的值;
(2)當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的圓心在點(diǎn),點(diǎn),求;
(1)過(guò)點(diǎn)的圓的切線方程;
(2)點(diǎn)是坐標(biāo)原點(diǎn),連結(jié),,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)直線和圓相交于點(diǎn)
(1)求弦的垂直平分線方程;(2)求弦的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案