【題目】某國際性會(huì)議紀(jì)念章的一特許專營店銷售紀(jì)念章,每枚進(jìn)價(jià)為5元,同時(shí)每銷售一枚這種紀(jì)念章還需向該會(huì)議的組織委員會(huì)交特許經(jīng)營管理費(fèi)2元,預(yù)計(jì)這種紀(jì)念章以每枚20元的價(jià)格銷售時(shí),該店一年可銷售2000枚,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),每枚紀(jì)念章的銷售價(jià)格在每枚20元的基礎(chǔ)上,每減少一元?jiǎng)t增加銷售400枚,而每增加一元?jiǎng)t減少銷售100枚,現(xiàn)設(shè)每枚紀(jì)念章的銷售價(jià)格為元(每枚的銷售價(jià)格應(yīng)為正整數(shù)).

1)寫出該特許專營店一年內(nèi)銷售這種紀(jì)念章所獲得的利潤(元)與每枚紀(jì)念章的銷售價(jià)格的函數(shù)關(guān)系式;

2)當(dāng)每枚紀(jì)念章銷售價(jià)格為多少元時(shí),該特許專營店一年內(nèi)利潤(元)最大,并求出這個(gè)最大值;

【答案】1;(2,.

【解析】

1)根據(jù)題意列函數(shù)關(guān)系式即可,需注意,當(dāng)時(shí),由題意不生產(chǎn)紀(jì)念章,;

2)利用配方法分別求解不同條件下的最值,并進(jìn)行比較即可,需注意每枚的銷售價(jià)格應(yīng)為正整數(shù)

1)依題意,,

整理可得

2)由(1)可得,

當(dāng)時(shí),則當(dāng)時(shí),;

當(dāng)時(shí),則當(dāng)時(shí),;

因?yàn)?/span>,

則當(dāng)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 設(shè)函數(shù)

(1)如果,那么實(shí)數(shù)___;

(2)如果函數(shù)有且僅有兩個(gè)零點(diǎn),那么實(shí)數(shù)的取值范圍是___.

【答案】或4;

【解析】

試題分析:由題意 ,解得;

第二問如圖:

的圖象是由兩條以 為頂點(diǎn)的射線組成,當(dāng)A,B 之間(包括不包括)時(shí),函數(shù)有兩個(gè)交點(diǎn),即有兩個(gè)零點(diǎn).所以 的取值范圍為

考點(diǎn):1.分段函數(shù)值;2.函數(shù)的零點(diǎn).

型】填空
結(jié)束】
15

【題目】已知函數(shù)的部分圖象如圖所示.

)求函數(shù)的解析式.

)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域是的一切實(shí)數(shù),對(duì)定義域內(nèi)的任意,都有且當(dāng)時(shí),.

(1)求證:是偶函數(shù);

(2)求證:上是增函數(shù);

(3)試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),若已知其在內(nèi)只取到一個(gè)最大值和一個(gè)最小值,且當(dāng)時(shí)函數(shù)取得最大值為;當(dāng),函數(shù)取得最小值為

(1)求出此函數(shù)的解析式;

(2)是否存在實(shí)數(shù),滿足不等式?若存在,求出的范圍(或值),若不存在,請(qǐng)說明理由;

(3)若將函數(shù)的圖像保持橫坐標(biāo)不變縱坐標(biāo)變?yōu)樵瓉淼?/span>得到函數(shù),再將函數(shù)的圖像向左平移個(gè)單位得到函數(shù),已知函數(shù)的最大值為,求滿足條件的的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為偶函數(shù).

1)求實(shí)數(shù)的值,并寫出在區(qū)間上的增減性和值域(不需要證明);

2)令,其中,若對(duì)任意、,總有,求的取值范圍;

3)令,若對(duì)任意、,總有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí),某地上班族中的成員僅以自駕或公交方式通勤,分析顯示:當(dāng)的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?

2)求該地上班族的人均通勤時(shí)間的表達(dá)式;并求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】口袋里裝有1紅,2白,3黃共6個(gè)形狀相同的小球,從中取出2球,事件取出的兩球同色,取出的2球中至少有一個(gè)黃球,取出的2球至少有一個(gè)白球,取出的兩球不同色,取出的2球中至多有一個(gè)白球”.下列判斷中正確的序號(hào)為________.

為對(duì)立事件;②是互斥事件;③是對(duì)立事件:④;⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)時(shí),的值為2千克/年;當(dāng)時(shí),的一次函數(shù);當(dāng)時(shí),因缺氧等原因,的值為0千克/年.

(1)當(dāng)時(shí),求關(guān)于的函數(shù)表達(dá)式.

(2)當(dāng)養(yǎng)殖密度為多少時(shí),魚的年生長量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且ABBP2,AD=AE=1,AEAB,且AEBP

(1)求平面PCD與平面ABPE所成的二面角的余弦值;

(2)線段PD上是否存在一點(diǎn)N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點(diǎn)N的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案